• 제목/요약/키워드: chalcogenide materials

검색결과 142건 처리시간 0.036초

2-Dimensional Holographic Grating Formation in Chalcogenide Thin Films

  • Lee, Jung-Tae;Yeo, Choel-Ho;Chung, Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • 제5권1호
    • /
    • pp.34-37
    • /
    • 2004
  • Amorphous chalcogenide thin films, especially a-(Se, S) based films, exhibit a number of photo-induced phenomena. In this study, we make the As$\_$40/Ge$\_$10/Se$\_$15/S$\_$35//Ag thin film and then we measure the holographic diffraction efficiency according to thickness of Ag. And we form the two-dimensional holographic grating. At first, we formed one-dimensional grating and then we form two-dimensional grating by rotate the sample. We found out the most suitable thickness of Ag and in case of As$\_$40/Ge$\_$10/Se$\_$15/S$\_$35//Ag(600${\AA}$), the diffraction efficiency was more higher than other samples. The holographic grating was formed by He-Ne laser(λ=632.8nm). The intensity of incident beam was 2.5mW and incident angle was 20$^{\circ}$. We confirm. the two-dimensional holographic grating by the pattern of diffracted beam and AFM(Atomic Force Microscope) image. We perform the etching process using by 0.26N NaOH in order to confirm clearly two-dimensional grating.

몰드성형용 GeSbSe계 칼코게나이드 유리 제작 및 특성 분석 (Fabrication and Evaluation of Chalcogenide Glass for Molding)

  • 박흥수;차두환;김혜정;김정호;이현용
    • 한국전기전자재료학회논문지
    • /
    • 제25권2호
    • /
    • pp.135-139
    • /
    • 2012
  • In this study, we synthesized the chalcogenide glass($Ge_{19}Sb_{23}Se_{58}$) for infrared optics by meltquenching method and verified the effect of cooling condition on the glass properties. The structural and optical properties of the glass were analyzed by XRD, FT-IR and SEM image. The glass synthesized under the cooling temperature of $980^{\circ}C$ shows transmittance of 58% at $8\sim12{\mu}m$, which was decreased as the cooling temperature was decreased. In addition, thermal and hardness also were measured. From the analysis results, we ascertained the feasibility as a molding materials for infrared optics.

Ge-Se-Bi chalcogenide glass의 비정질 및 결정화에 따른 전기전도도의 변화 (The study on the cystallization and electrical properties of Ge-Se-Bi system chalcogenide glasses)

  • 이명원;강원호;박창만;이기암
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제6권2호
    • /
    • pp.175-183
    • /
    • 1993
  • Amorphous Semicondyctor로서 Chalcogenide계의 Ge-Se-Bi계 비정질화와 결정화 실험을 통하여 전기전도도를 평가코자 하였다. 시료의 조성범위는 G $e_{15-25}$S $e_{65-85}$B $i_{2.5-15B}$의 범위에서 5N의 Ge, Se, Bi metal분말을 사용하였다. 시료는 석영관에 진공 장입후 용융시켜 비정질화 하였다. 이때 열처리 조건은 1000.deg.C에서 10시간 동안 가열하였으며 급냉 조건은 3834.deg.C/sec로 처리하였다. 비정질 sample의 결정화는 결정핵을 형성 시킨 후 온도 변화 및 시간의 변화를 주면서 결정을 성장시켰으며 이때 B $i_{2}$S $e_{3}$와 GeS $e_{2}$ 결정상을 관찰 할 수 있었다. 박막화는 위의 실험에 사용된 Bulk sample을 사용하여 박막을 제작하였으며 유리화 영역은 Ge 15 at%, Se 70 at% 이상, Bi가 10 at% 이하일 때 비정질화가 용이하였다. Bulk의 경우 Ge를 20 at%로 고정시 Bi의 at% 함량이 증가함에 따라 전기전도도가 증가했으며 Bi가 7.5 at%이상일때 급격한 전도도의 증가를 가져왔다. 박막의 경우엔 Bulk sample보다 Bi의 함량이 증가시 더욱 큰 전도도의 증가를 가져왔다. G $e_{20}$S $e_{77.5}$B $i_{2.5}$ 저성의 결정화 경우 330.deg.C에서 4hr 유지시킨 경우가 가장 양호하였다.다.하였다.다.

  • PDF

Characterization of InSbTe nanowires grown directly by MOCVD for high density PRAM application

  • Ahn, Jun-Ku;Park, Kyoung-Woo;Jung, Hyun-June;Park, Yeon-Woong;Hur, Sung-Gi;Yoon, Soon-Gil
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.23-23
    • /
    • 2009
  • Recently, the nanowire configuration of GST showed nanosecond-level phase switch at very low power dissipation, suggesting that the nanowires could be ideal for data storage devices. In spite of many advantages of IST materials, their feasibility in both thin films and nanowires for electronic memories has not been extensively investigated. The synthesis of the chalcogenide nanowires was mainly preformed via a vapor transport process such as vapor-liquid-solid (VLS) growth at a high temperature. However, in this study, IST nanowires as well as thin films were prepared at a low temperature (${\sim}250^{\circ}C$) by metal organic chemical vapor deposition(MOCVD) method, which is possible for large area deposition. The IST films and/or nanowires were selectively grown by a control of working pressure at a constant growth temperature by MOCVD. In-Sb-Te NWs will be good candidate materials for high density PRAM applications. And MOCVD system is powerful for applying ultra scale integration cell.

  • PDF

$Ge_1Se_1Te_2$ 상변화 재료를 이용한 고성능 비휘발성 메모리에 대한 연구 (A high performance nonvolatile memory cell with phase change material of $Ge_1Se_1Te_2$)

  • 이재민;신경;정홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.15-16
    • /
    • 2005
  • Chalcogenide phase change memory has high performance to be next generation memory, because it is a nonvolatile memory processing high programming speed, low programming voltage, high sensing margin, low consumption and long cycle duration. We have developed a new material of PRAM with $Ge_1Se_1Te_2$. This material has been propose to solve the high energy consumption and high programming current. We have investigated the phase transition behaviors in function of various process factor including contact size, cell size, and annealing time. As a result, we have observed that programming voltage and writing current of $Ge_1Se_1Te_2$ are more improved than $Ge_2Sb_2Te_5$ material.

  • PDF

Improved Uniformity in Resistive Switching Characteristics of GeSe Thin Film by Ag Nanocrystals

  • Park, Ye-Na;Shin, Tae-Jun;Lee, Hyun-Jin;Lee, Ji-Soo;Jeong, Yong-Ki;Ahn, So-Hyun;Lee, On-You;Kim, Jang-Han;Nam, Ki-Hyun;Chung, Hong-Bay
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.237.2-237.2
    • /
    • 2013
  • ReRAM cell, also known as conductive bridging RAM (CBRAM), is a resistive switching memory based on non-volatile formation and dissolution of conductive filament in a solid electrolyte [1,2]. Especially, Chalcogenide-based ReRAM have become a promising candidate due to the simple structure, high density and low power operation than other types of ReRAM but the uniformity of switching parameter is undesirable. It is because diffusion of ions from anode to cathode in solid electrolyte layer is random [3]. That is to say, the formation of conductive filament is not go through the same paths in each switching cycle which is one of the major obstacles for performance improvement of ReRAM devices. Therefore, to control of nonuniform conductive filament formation is a key point to achieve a high performance ReRAM. In this paper, we demonstrated the enhanced repeatable bipolar resistive switching memory characteristics by spreading the Ag nanocrystals (Ag NCs) on amorphous GeSe layer compared to the conventional Ag/GeSe/Pt structure without Ag NCs. The Ag NCs and Ag top electrode act as a metal supply source of our devices. Excellent resistive switching memory characteristics were obtained and improvement of voltage distribution was achieved from the Al/Ag NCs/GeSe/Pt structure. At the same time, a stable DC endurance (>100 cycles) and an excellent data retention (>104 sec) properties was found from the Al/Ag NCs/GeSe/ Pt structured ReRAMs.

  • PDF

Resistive Switching Characteristics of Ag Doped Ge0.5Se0.5 Solid Electrolyte

  • Kim, Jang-Han;Nam, Ki-Hyun;Chung, Hong-Bay
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.478-478
    • /
    • 2013
  • Resistance-change Random Access Memory (ReRAM) memory, which utilizes electrochemical control of metal in thin films of solid electrolyte, shows great promise as a future solid state memory. The technology utilizes the electrochemical formation and removal of metallic pathways in thin films of solid electrolyte. Key attributes are low voltage and current operation, excellent scalability, and a simple fabrication sequence. In this work, we investigated the nature of thin films formed by photo doping of Ag+ ions into chalcogenide materials for use in solid electrolyte of Resistance-change RAM devices and switching characteristics.

  • PDF

칼코게나이드 박막을 이용한 편광 홀로그래픽의 회절효율 측정 (The Measurement on Diffraction Efficiency in Polarization Holography using Amorphous Chalcogenide Thin Films)

  • 장선주;여철호;이현용;정홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.87-90
    • /
    • 1999
  • The dependence of diffraction efficiency as a funct~on of film thickness and incident angle has been investigated in amorphous chalcogenide thin films, which act as a polarization holographic materials. Especially a-(Se, S) based films exhibit a number of photoinduced phenomena not observed in other types of amorphous thin films. Holographic gratings in amorphous As-Ge-Se-S thin films have been formed using the mutual perpendicular polarized(linearly) He-Ne laser light. We could obtain the optimum condition to get high diffraction efficiency.

  • PDF

포토닉 크리스탈 응용을 위한 비정질 칼코게나이드 As-Ge-Se-S 박막의 특성 연구 (The characteristic study of amorphous chalcogenide As-Ge-Se-S thin film for photonic crystal application)

  • 남기현;구용운;최혁;정홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.77-78
    • /
    • 2007
  • In this paper, we suppose that the 1-dimensional photonic crystal using holography lithography. We used Ag doped amorphous AsGeSeS which belongs in the chalcogenide materials have sensitive photoluminescence property. The purpose of this experiment is the process to complete 3-D photonic crystal after making 2-D photonic crystal. The lattice formation was made an observation by irradiating He-Ne laser with the AsGeSeS film leaned obliquely. Then, by measuring formed diffraction beam, the diffraction lattice was calculated.

  • PDF

MOCVD법에 의해 나노급 구조 안에 증착된 InSbTe 상변화 재료 (InSbTe phase change materials deposited in nano scaled structures by metal organic chemical vapor deposition)

  • 안준구;박경우;조현진;허성기;윤순길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.52-52
    • /
    • 2009
  • To date, chalcogenide alloy such as $Ge_2Sb_2Te_5$(GST) have not only been rigorously studied for use in Phase Change Random Access Memory(PRAM) applications, but also temperature gap to make different states is not enough to apply to device between amorphous and crystalline state. In this study, we have investigated a new system of phase change media based on the In-Sb-Te(IST) ternary alloys for PRAM. IST chalcogenide thin films were prepared in trench structure (aspect ratio 5:1 of length=500nm, width=100nm) using Tri methyl Indium $(In(CH_3)_4$), $Sb(iPr)_3$ $(Sb(C_3H_7)_3)$ and $Te(iPr)_2(Te(C_3H_7)_2)$ precursors. MOCVD process is very powerful system to deposit in ultra integrated device like 100nm scaled trench structure. And IST materials for PRAM can be grown at low deposition temperature below $200^{\circ}C$ in comparison with GST materials. Although Melting temperature of 1ST materials was $\sim 630^{\circ}C$ like GST, Crystalline temperature of them was ~$290^{\circ}C$; one of GST were $130^{\circ}C$. In-Sb-Te materials will be good candidate materials for PRAM applications. And MOCVD system is powerful for applying ultra scale integration cell.

  • PDF