• 제목/요약/키워드: chalcogenide materials

검색결과 142건 처리시간 0.027초

Cu-doped Ge-Se 박막의 스위칭 특성

  • 남기현;정원국;정홍배
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.157-157
    • /
    • 2010
  • Programmable Metallization Cell (PMC) is a memory device based on the electrolytical characteristic of chalcogenide materials. PMC components of Ge-Se doped with Ag ions were studied with help of the previous studies and copper was used for metallic ions taking into account of economy of components. In this study, we investigated the nature of thin films formed by photo doping of Cu ions into chalcogenide materials for use in solid electrolyte of programmable metallization cell devices. We were able to do more economical approach by using copper which play role of electrolyte ions. The results imply that a Cu-rich phase separates owing to the reaction of Cu with free atoms from chalcogenide materials.

  • PDF

Some Peculiarities of Photo-structural Transformations in Amorphous Chalcogenide Glassy Semiconductor Films

  • Prikhodko, O.;Almasov, N.;Korobova, Natalya
    • Journal of information and communication convergence engineering
    • /
    • 제9권5호
    • /
    • pp.587-590
    • /
    • 2011
  • The absence of deep traps for electrons in the spectrum of $As_{40}Se_{30}S_30$ localized states films obtained by ion sputtering was determined. Bipolar drift of charge carriers was found in amorphous $As_{40}Se_{30}S_30$ films of chalcogenide glassy semiconductors, obtained by ion-plasma sputtering of high-frequency, unlike the films of these materials obtained by thermal evaporation.

칼코겐화물과 산화물 이종구조의 각도분해능 광전자분광 연구 (Angle-resolved photoemission spectrscopy for chalcogenide and oxide heterostructures)

  • 장영준
    • 진공이야기
    • /
    • 제5권2호
    • /
    • pp.10-17
    • /
    • 2018
  • Chalcogenide and oxide heterostructures have been studied as a next-generation electronic materials, due to their interesting electronic properties, such as direct bandgap semiconductor, ferroelectricity, ferromagnetism, superconductivity, charge-density waves, and metal-insulator transition, and their modification near heterointerfaces, so called, electronic reconstruction. An angle-resolved photoemission spectroscopy (ARPES) is a powerful technique to unveil such novel electronic phases in detail, especially combined with high quality thin film preparation methods, such as, molecular beam epitaxy and pulsed laser deposition. In this article, the recent ARPES results in chalcogenide and oxide thin films will be introduced.

Electrical Switching Characteristics of Ge-Se Thin Films for ReRAM Cell Applications

  • Kim, Jang-Han;Nam, Ki-Hyun;Chung, Hong-Bay
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.343-344
    • /
    • 2012
  • It has been known since the mid 1960s that Ag can be photodissolved in chalcogenide glasses to form materials with interesting technological properties. In the 40 years since, this effect has been used in diverse applications such as the fabrication of relief images in optical elements, micro photolithographic schemes, and for direct imaging by photoinduced Ag surface deposition. ReRAM, also known as conductive bridging RAM (CBRAM), is a resistive switching memory based on non-volatile formation and dissolution of a conductive filament in a solid electrolyte. Especially, Ag-doped chalcogenide glasses and thin films have become attractive materials for fundamental research of their structure, properties, and preparation. Ag-doped chalcogenide glasses have been used in the formation of solid electrolyte which is the active medium in ReRAM devices. In this paper, we investigated the nature of thin films formed by the photo-dissolution of Ag into Ge-Se glasses for use in ReRAM devices. These devices rely on ion transport in the film so produced to create electrically programmable resistance states. [1-3] We have demonstrated functionalities of Ag doped chalcogenide glasses based on their capabilities as solid electrolytes. Formation of such amorphous systems by the introduction of Ag+ ions photo-induced diffusion in thin chalcogenide films is considered. The influence of Ag+ ions is regarded in terms of diffusion kinetics and Ag saturation is related to the composition of the hosting material. Saturated Ag+ ions have been used in the formation of conductive filaments at the solid electrolyte which is the active medium in ReRAM devices. Following fabrication, the cell displays a metal-insulator-metal structure. We measured the I-V characteristics of a cell, similar results were obtained with different via sizes, due to the filamentary nature of resistance switching in ReRAM cell. As the voltage is swept from 0 V to a positive top electrode voltage, the device switches from a high resistive to a low resistive, or set. The low conducting, or reset, state can be restored by means of a negative voltage sweep where the switch-off of the device usually occurs.

  • PDF

멀티비트 정보저장을 위한 적층 구조 상변화 메모리에 대한 연구 (Stack-Structured Phase Change Memory Cell for Multi-State Storage)

  • 이동근;김승주;류상욱
    • 반도체디스플레이기술학회지
    • /
    • 제8권1호
    • /
    • pp.13-17
    • /
    • 2009
  • In PRAM applications, the devices can be made for both binary and multi-state storage. The ability to attain intermediate stages comes either from the fact that some chalcogenide materials can exist in configurations that range from completely amorphous to completely crystalline or from designing device structure such a way that mimics multiple phase chase phenomena in single cell. We have designed stack-structured phase change memory cell which operates as multi-state storage. Amorphous $Ge_xTe_{100-x}$ chalcogenide materials were stacked and a diffusion barrier was chosen for each stack layers. The device is operated by crystallizing each chalcogenide material as sequential manner from the bottom layer to the top layer. The amplitude of current pulse and the duration of pulse width was fixed and number of pulses were controlled to change overall resistance of the phase change memory cell. To optimize operational performance the thickness of each chalcogenide was controlled based on simulation results.

  • PDF

자기정렬구조를 갖는 칼코겐화물 상변화 메모리 소자의 전기적 특성 및 온도 분포 (Electrical Characteristics of and Temperature Distribution in Chalcogenide Phase Change Memory Devices Having a Self-Aligned Structure)

  • 윤혜련;박영삼;이승윤
    • 한국전기전자재료학회논문지
    • /
    • 제32권6호
    • /
    • pp.448-453
    • /
    • 2019
  • This work reports the electrical characteristics of and temperature distribution in chalcogenide phase change memory (PCM) devices that have a self-aligned structure. GST (Ge-Sb-Te) chalcogenide alloy films were formed in a self-aligned manner by interdiffusion between sputter-deposited Ge and $Sb_2Te_3$ films during thermal annealing. A transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDS) analysis demonstrated that the local composition of the GST alloy differed significantly and that a $Ge_2Sb_2Te_5$ intermediate layer was formed near the $Ge/Sb_2Te_3$ interface. The programming current and threshold switching voltage of the PCM device were much smaller than those of a control device; this implies that a phase transition occurred only in the $Ge_2Sb_2Te_5$ intermediate layer and not in the entire thickness of the GST alloy. It was confirmed by computer simulation, that the localized phase transition and heat loss suppression of the GST alloy promoted a temperature rise in the PCM device.

A Study on the Thermal, Electrical Characteristics of Ge-Se-Te Chalcogenide Material for Use in Phase Change Memory

  • Nam, Ki-Hyun;Chung, Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권6호
    • /
    • pp.223-226
    • /
    • 2008
  • $Ge_1Se_1Te_2$ chalcogenide amorphous materials was prepared by the conventional melt-quenching method. Samples were processed bye-beam evaporator systems and RF-sputtering systems. Phase change characteristics were analyzed by measuring glassification temperature, crystallization temperature and density of bulk material. The thermal characteristics were measured at the temperature between 300 K and 700 K, and the electrical characteristics were studied within the range from 0 V to 3 V. The obtained results agree with the electrothermal model for Phase-Change Random Access Memory.

Field-induced Resistive Switching in Ge-Se Based ReRAM

  • 이규진;엄준경;정지수;장혜정;김장한;정홍배
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.342-342
    • /
    • 2012
  • Resistance-change Random Access Memory (ReRAM), which utilizes electrochemical control of nanoscale quantities of metal in thin films of solid electrolyte, shows great promise as a future solid state memory. The technology utilizes the electrochemical formation and removal of metallic pathways in thin films of solid electrolyte. Key attributes are low voltage and current operation, excellent scalability, and a simple fabrication sequence. In this study, we investigated the nature of thin films formed by photo doping of Ag+ ions into chalcogenide materials for use in solid electrolyte of programmable metallization cell devices. We measured the I-V characteristics by field-effect of the device. The results imply that a Ag-rich phase separates owing to the reaction of Ag with free atoms from chalcogenide materials.

  • PDF

홀로그래픽 회절 패턴을 고체전해질에 적용하기 위한 비정질 Ge-Se 박막의 특성에 관한 연구 (The Study of Amorphous Ge-Se Thin Film for applying Holographic Diffraction Pattern to Solid Electrolyte)

  • 남기현;정홍배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 Techno-Fair 및 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.123-124
    • /
    • 2008
  • In this study, we studied the nature of thin films formed by photodoping chalcogenide materials with for use in programmable metallization cell devices, a type of ReRAM. We investigated the resistance of Ag-doped chalcogenide thin films varied in the applied voltage bias direction from about $1M{\Omega}$ to several hundreds of ${\Omega}$. As a result of these resistance change effects, it was found that these effects agreed with PMC-RAM. The results imply that a Ag-rich phase separates owing to the reaction of Ag with free atoms from the chalcogenide materials.

  • PDF

비구면렌즈 설계를 위한 칼코게나이드 Ge-Sb-Se계 구조적, 광학적 특성 연구 (Structural and Optical Characteristics of ChalcogenideGe_Sb_Se for Basic Aspheric Lens Design)

  • 고준빈;명태식
    • 한국생산제조학회지
    • /
    • 제23권2호
    • /
    • pp.133-137
    • /
    • 2014
  • The recent development of electro-optic devices and anticorrosion media has made it necessary investigate infrared optical systems with solid-solid interfaces of materials with amorphous characteristics. One of the most promising classes of materials for these purposes seems to be chalcogenide glasses, which are based on the Ge_Sb_Se system, have drawn much attention because of their use in preparing optical lenses and fibers that are transparent in the range of 3-12 um. In this study, a standard melt-quenching technique was used to prepare amorphous Ge_Sb_Sechalcogenideto be used in the design and manufacture of infrared optical products. The results of structural, optical, and surface roughness analyses of high purity Ge_Sb_Sechalcogenide glasses after various annealing processes reported.