• Title/Summary/Keyword: ceramic-polymer composite

Search Result 163, Processing Time 0.024 seconds

BONE TISSUE ENGINEERING USING PLLA/HA COMPOSITE SCAFFOLD AND BONE MARROW MESENCHYMAL STEM CELL (PLLA/HA Composite Scaffold와 골수 줄기세포를 이용한 조직공학적 골재생에 대한 연구)

  • Kim, Byeong-Yol;Jang, Hyon-Seok;Rim, Jae-Suk;Lee, Eui-Seok;Kim, Dong-Hyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.4
    • /
    • pp.323-332
    • /
    • 2008
  • Aim of the study: Scaffolds are crucial to tissue engineering/regeneration. Biodegradable polymer/ceramic composite scaffolds can overcome the limitations of conventional ceramic bone substitutes such as brittleness and difficulty in shaping. In this study, poly(L-lactide)/hydroxyapatite(PLLA/HA) composite scaffolds were fabricated for in vivo bone tissue engineering. Material & methods: In this study, PLLA/HA composite microspheres were prepared by double emulsion-solvent evaporation method, and were evaluated in vivo bone tissue engineering. Bone marrow mesenchymal stem cell from rat iliac crest was differentiated to osteoblast by adding osteogenic medium, and was mixed with PLLA/HA composite scaffold in fibrin gel and was injected immediately into rat cranial bone critical size defect(CSD:8mm in diameter). At 1. 2, 4, 8 weeks after implantation, histological analysis by H-E staining, histomorphometric analysis and radiolographic analysis were done. Results: BMP-2 loaded PLLA/HA composite scaffolds in fibrin gel delivered with osteoblasts differentiated from bone marrow mesenchymal stem cells showed rapid and much more bone regeneration in rat cranial bone defects than control group. Conclusion: This results suggest the feasibility and usefulness of this type of scaffold in bone tissue engineering.

Fabrication and Characterization of Hydroxyapatite/Mullite and Tricalcium Phosphate/Al2O3 Composites Containing 30 wt% of Bioactive Components

  • Ha, Jung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.374-379
    • /
    • 2015
  • Mullite-matrix and $Al_2O_3$-matrix composites were fabricated with 30 wt% hydroxyapatite (HA) and tricalcium phosphate (TCP), respectively, as additives to give bioactivity. A diphasic gel process was employed to lower the densification temperature of the mullite matrix to $1320^{\circ}C$. A polymer complexation process was used to synthesize a TCP powder that was fully densified at $1250^{\circ}C$, for application to the matrix. For the HA/mullite composite, HA decomposed during sintering by reactions with the matrix components of $Al_2O_3$ and $SiO_2$, resulting in a mixture of $Al_2O_3$, TCP, and other minor phases with a low densification of less than 88% of the theoretical density (TD). In contrast, the TCP/$Al_2O_3$ composite was highly densified by sintering at $1350^{\circ}C$ to 96%TD with no reaction between the components. Different from the TCP monolith, the TCP/$Al_2O_3$ composite also showed a fine microstructure and intergranular fracture, both of which characteristics are advantageous for strength and fracture toughness.

Comparison of Nondestructive Damage Sensitivity of Single Fiber/Epoxy Composites Using Ceramic PZT and Polymeric PVDF Sensors By Micromechanical Technique and Acoustic Emission (Micromechanical 시험법과 AE를 이용한 세라믹 PZT 및 고분자 PVDF 센서에 따른 단섬유 강화 에폭시 복합재료의 비파괴 손상감지능 비교)

  • Jung Jin-Kyu;Kim Dae-Sik;Park Joung-Man;Yoon Dong-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.135-138
    • /
    • 2004
  • Conventional piezoelectric lead-zirconate-titanate (PZT) senor has high sensitivity, but it is very brittle. Recently polymer films such as polyvinylidene fluoride (PVDF) and poly(vinylidene fluoride­trifluoroethylene) (P(VDF-TrFE)) copolymer have been used as a sensor. The advantages of polymer sensor are the flexibility and mechanical toughness. Simple process and possible several shapes are also additional advantages. Polymer sensor can be directly embedded in a structure. In this study, nondestructive damage sensitivity of single basalt fiber/epoxy composites was investigated with sensor type and thermal damage using AE and oscilloscope. And AE waveform for epoxy matrix with various damage types was compared to each other. The damage sensitivity of two polymer sensors was rather lower than that of PZT sensor. The damage sensitivity of PVDF sensor did not decrease until thermal damage temperature at $80^{\circ}C$ and they decreased significantly at $110^{\circ}C$ However, the damage sensitivity of P(VDF-TrFE) sensor at $110^{\circ}C$ was almost same in no damage sensor. For both top and side impacts, the difference in arrival time increased with increasing internal and surface damage density of epoxy matrix.

  • PDF

Effect of surface treatments and universal adhesive application on the microshear bond strength of CAD/CAM materials

  • Sismanoglu, Soner;Gurcan, Aliye Tugce;Yildirim-Bilmez, Zuhal;Turunc-Oguzman, Rana;Gumustas, Burak
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.1
    • /
    • pp.22-32
    • /
    • 2020
  • PURPOSE. The aim of this study was to evaluate the microshear bond strength (µSBS) of four computer-aided design/computer-aided manufacturing (CAD/CAM) blocks repaired with composite resin using three different surface treatment protocols. MATERIALS AND METHODS. Four different CAD/CAM blocks were used in this study: (1) flexible hybrid ceramic (FHC), (2) resin nanoceramic (RNC), (c) polymer infiltrated ceramic network (PICN) and (4) feldspar ceramic (FC). All groups were further divided into four subgroups according to surface treatment: control, hydrofluoric acid etching (HF), air-borne particle abrasion with aluminum oxide (AlO), and tribochemical silica coating (TSC). After surface treatments, silane was applied to half of the specimens. Then, a silane-containing universal adhesive was applied, and specimens were repaired with a composite, Next, µSBS test was performed. Additional specimens were examined with a contact profilometer and scanning electron microscopy. The data were analyzed with ANOVA and Tukey tests. RESULTS. The findings revealed that silane application yielded higher µSBS values (P<.05). All surface treatments were showed a significant increase in µSBS values compared to the control (P<.05). For FHC and RNC, the most influential treatments were AlO and TSC (P<.05). CONCLUSION. Surface treatment is mandatory when the silane is not preferred, but the best bond strength values were obtained with the combination of surface treatment and silane application. HF provides improved bond strength when the ceramic content of material increases, whereas AlO and TSC gives improved bond strength when the composite content of material increases.

Ni Coating Characteristics of High K Capacitor Ceramic Powders

  • Park, Jung-Min;Lee, Hee-Young;Kim, Jeong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.339-339
    • /
    • 2007
  • Metal coating on ceramic powder has long been attracting interest for various applications such as superconductor where the brittle nature of high temperature ceramic superconductor was complemented by silver coating and metalloceramics where mechanical property improvement was achieved via electroless plating. More recently it has become of great interest in embedded passive device applications since metal coating on ceramic particles may result in the enhancement of the dielectric properties of ceramic-polymer composite capacitors. In our study, nickel ion-containing solution was used for coating commercial capacitor-grade $BaTiO_3$ powder. After filtering process, the powder was dried and heat-treated in 5% forming gas at $900^{\circ}C$. XRD and TEM were utilized for the observation of crystallization behavior and morphology of the particles. It was found that the nickel coating characteristics were strongly dependent on the several parameters and processing variables, such as starting $BaTiO_3$ particle size, nickel source, solution chemistry, coating temperature and time. In this paper, the effects of these variables on the coating characteristics will be presented in some detail.

  • PDF

Study on the Effects of BaTiO$_3$ Particle Size on Dielectric Constant and Leakage Current of Epoxy/BaTiO$_3$ Composite Films for Embedded Capacitors (BaTiO$_3$ 분말의 입자 크기가 내장형 커패시턴용 에폭시/BaTiO$_3$복합체 필름의 유전상수와 누설전류에 미치는 영향에 관한 연구)

  • 조성동;이주연;백경욱
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.2
    • /
    • pp.11-17
    • /
    • 2002
  • Polymer/ceramic composite is of great interest as a dielectric material for embedded capacitors. This paper is concerned in the effects of $BaTiO_3$ particle size on epoxy/$BaTiO_3$ composite films for embedded capacitors. 6 different size powders smaller than 1 $\mu\textrm{m}$ in diameter and bisphenol-A type epoxy were used for this experiment. Dielectric constant of the epoxy/$BaTiO_3$ composite capacitors increases as the powder size increases at the same powder loading, which is due to the increase of tetragonality of the powders as particle size increases. And leakage current of the capacitors also increases dramatically as the powder size increases. It was explained that this is due to the decrease of the number of $BaTiO_3$epoxy/$BaTiO_3$ potential barriers per unit length and, moreover, the enhancement of potential barrier lowering effects caused by increase of potential drop per one barrier. As a result, there is tradeoff between high dielectric constant and low leakage current in the epoxy/$BaTiO_3$ composite capacitors. So it is important to select proper size $BaTiO_3$ powders in accordance with needs.

  • PDF

Study on the Level Limit Switch Using a Self Made 1-3 type Ceramic/Polymer Composite Ultrasonic Transducer (1-3형 복합압전체 초음파 트랜스듀서를 사용한 레벨Limit스위치에 관한 연구)

  • Park, K.I.;Kim, H.G.;Shin, K.H.;SaGong, G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.756-759
    • /
    • 2003
  • In this study, an ultrasonic transducer is fabricated with a 1-3 type composite resonator. Pulse-echo responses of an ultrasonic transducer are investigated in underwater with the designated water-levels. LED output signals of a level limit switch with changing a water level are obtained by using the currently developed self-made 1-3 type composite transducer and electric measuring unit. LED is turned on at above the up-limit level with increasing a water level, and LED is turned on at less than the down-limit level with decreasing a water level.

  • PDF

A Study on the Level Limit Switch for Measuring Near-distance Variation with 1-3 Type Ceramic/Polymer Composite Ultrasonic Transducer (1-3형 복합압전체 초음파 트랜스듀서를 사용한 근접거리변동 측정용 레벨 Limit스위치에 관한 연구)

  • Kim, H.G.;Park, K.I.;Shin, K.H.;SaGong, G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.103-106
    • /
    • 2003
  • In this study, an ultrasonic transducer is fabricated with 1-3 type composite resonators. Pulse-echo responses of an ultrasonic transducer are investigated in underwater dependent on the variable designated water-level. LED Output signals of a level limit with changing a water level is obtained by the 1-3 type self-made composite transducer and electric measuring unit. LED is turned on at above the up-limit level with increasing a water level, and LED is turned on at less than the down-limit level with decreasing a water level. There was good agreement between the virtual water level and output LED signal by using the self-made water-detecting system.

  • PDF

A Study on the Level Limit Switch for Underwater with 1-3 Type Ceramic/Polymer Composite Ultrasonic Transducer (1-3형 복합압전체 초음파 트랜스듀서를 사용한 수중용 레벨 Limit스위치에 관한 연구)

  • Kim, H.G.;Park, K.I.;Shin, K.H;SaGong, G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.292-295
    • /
    • 2003
  • In this study, an ultrasonic transducer is fabricated with 1-3 type composite resonators. Pulse-echo responses of an ultrasonic transducer are investigated in underwater dependent on the variable designated water-level. LED Output signals of a level limit with changing a water level is obtained by the 1-3 type self-made composite transducer and electric measuring unit. LED is turned on at above the up-limit level with increasing a water level, and LED is turned on at less than the down-limit level with decreasing a water level. There was good agreement between the virtual level and output LED signal by using the self-made water-detecting system.

  • PDF

A Study on Heating Element Properties of Carbon Nanotube/Silicon Carbonitride Composite Sheet using Branched Structured Polysilazane as Precursor (가지 달린 구조의 폴리실라잔을 전구체로 이용해 제조한 카본 나노튜브/실리콘 카보나이트라이드 복합체 시트의 발열특성에 관한 연구)

  • Huh, Tae-Hwan;Song, Hyeon Jun;Jeong, Yeong Jin;Kwark, Young-Je
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.395-400
    • /
    • 2020
  • In this paper, we manufactured silsesquiaznae (SSQZ)-coated carbon nanotube (CNT) surface heating elements, which allowed stable heating at high temperatures. The prepared composite sheet was confirmed by FE-SEM that the SSQZ fully coated the surface of CNT sheet. Furthermore, it was also confirmed that the silicon carbonitride (SiCN) ceramic formed by heat treatment of 800℃ have no defects found and maintain intact structure. The CNT/SiCN composite sheet was able to achieve higher thermal stability than raw CNT sheets in both nitrogen and air atmosphere. Finally, the CNT/SiCN composite sheet was possible to heat up at a temperature of over 700℃ in the atmosphere, and the re-heating was successfully operated after cooling.