• Title/Summary/Keyword: ceramic PTC

Search Result 65, Processing Time 0.03 seconds

Correlation between Grain-boundary Barrier-height and Self-controlled Fixed-temperature Heat-generation Function of Ceramic PTC Thermistor (세라믹 PTC 서미스터의 입계 장벽과 자기제어 정온발열 기능의 상관성)

  • So, Dae-Hwa;Im, Byeong-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.240-241
    • /
    • 2005
  • 비 직선적 정(+) 저항온도계수 특성을 갖는 PTC thermistor는 전이온도(큐리점) 부근에서 온도변화에 대하여 극히 큰 저항 값의 변화를 나타내는 산화물계반도체 저항기(또는 발열체)로써, 일반적으로 반도체의 온도-저항 특성과 같이 상온영역에서 온도의 상승과 함께 부성저항 특성을 나타내다가 온도가 점점 증가하여 큐리점 부근에 도달하면 저항이 급격히 증가하는 독특한 특성을 갖는다. Perovskite 구조의 $BaTiO_3$를 주성분으로 미량의 Dopant를 첨가하여 도전성을 갖게 한 N형 반도체의 일종으로 저항-온도 특성 전류-전압 특성, 전류감쇄 특성 등을 이용하여 과전류 보호회로, 히터, TV 소자회로(degausser), 모터기동회로, 온도센서, 정온발열기기 등으로 널리 사용된다. 본 연구는 큐리점 부근의 급격한 저항변화 현상과 결정입계의 전위장벽 형성 및 그에 따른 정온발열 기능의 상관성으로부터 그 응용성을 조사하였다.

  • PDF

Reliability Evaluation on PTC Heater Using Accelerated Life Test and Failure Analysis (고장 분석과 가속 수명시험을 통한 PTC 히터의 신뢰성 평가)

  • Choi, Hyoung-Seuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.843-846
    • /
    • 2015
  • In this paper, the failure mechanism of PTC heater were examined closely by failure analysis and based on it, accelerated life test were conducted. Finally, life distribution and acceleration model were established. The failure mechanism of PTC heater such as crack, increase of resistance due to heating were identified. Two acceleration factors such as temperature, humidity were chosen with two levels each and accelerated life test were done. Life distribution were identified as Weibull distribution with shape parameter 5.4 and Temperature-Humidity model was fitted as an acceleration model.

Effect of Re-oxidation on the Electrical Properties of Mutilayered PTC Thermistors (적층 PTC 써미스터의 전기적 특성에 대한 재산화의 영향)

  • Chun, Myoung-Pyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.98-103
    • /
    • 2013
  • The alumina substrates that Ni electrode was printed on and the multi-layered PTCR thermistors of which composition is $(Ba_{0.998}Ce_{0.002})TiO_3+0.001MnCO_3+0.05BN$ were fabricated by a thick film process, and the effect of re-oxidation temperature on their resistivities and resistance jumps were investigated, respectively. Ni electroded alumina substrate and the multi-layered PTC thermistor were sintered at $1150^{\circ}C$ for 2 h under $PO_2=10^{-6}$ Pa and then re-oxidized at $600{\sim}850^{\circ}C$ for 20 min. With increasing the re-oxidation temperature, the room temperature resistivity increased and the resistance jump ($LogR_{290}/R_{25}$) decreased, which seems to be related to the oxidation of Ni electrode. The small sized chip PTC thermistor such as 2012 and 3216 exhibits a nonlinear and rectifying behavior in I-V curve but the large sized chip PTC thermistor such as 4532 and 6532 shows a linear and ohmic behavior. Also, the small sized chip PTC thermistor such as 2012 and 3216 is more dependent on the re-oxidation temperature and easy to be oxidized in comparison with the large sized chip PTC thermistor such as 4532 and 6532. So, the re-oxidation conditions of chip PTC thermistor may be determined by considering the chip size.

$BaTiO_3-(Bi_{1/2}Na_{1/2})TiO_3$ system for PTC Thermistor (PTC 써미스터를 위한 $BaTiO_3-(Bi_{1/2}Na_{1/2})TiO_3$)

  • Park, Yong-Jun;Lee, Young-Jin;Paik, Jong-Hoo;Kim, Dae-Joon;Lee, Woo-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.91-92
    • /
    • 2007
  • An anomalous positive temperature coefficient of electrical resistivity (PTCR) was investigated in a ferroelectric lead-free perovskite-type compound $(Bi_{0.5}Na_{0.5})TiO_3$ within $BaTiO_3$-based solid solution ceramics. The effect of $Nb_2O_5$ content on the electrical properties and the microstructure of (1 - x) $BaTiO_3-x\;(Bi_{0.5}Na_{0.5})TiO_3$ (BNT) ceramics made using a conventional mixed oxide process also has been studied. The Curie temperature was obviously increased with the increasing of $(Bi_{0.5}Na_{0.5})TIO_3$ content. The Nb - doped BNT ceramics (x=0.01) display low resistivity values of $10^{1{\circ}}C-10^{2{\circ}}C$ ohm.cm at room temperature and the Curie Temperature of $T_c=160^{\circ}C$.

  • PDF

Effect of Reduction-Reoxidation Firing on PTCR Properties of Sm-doped Barium Titanate Ceramics (Sm이 첨가된 티탄산바륨의 PTCR 특성에 대한 환원-재산화의 영향)

  • Chun, Myoung-Pyo;Myoung, Seong-Jae;Han, Ik-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.35-38
    • /
    • 2005
  • The effect of reduction and re-oxidation firing on the PTCR properties of Sm-doped Barium Titanate ceramics was investigated for the application of multilayered PTC thermistor. The lattice parameter a, c decreases monotonically with increasing oxygen concentration in the reoxidation atmosphere, which seems to be related with the electrostatic Coulomb interaction between oxygen vancancy and nearest other atoms. With increasing oxygen concentration, the resistivity at room temperature and the magnitude of resistivity jump as a function of temperature increased in the region of oxygen concentration of 0 $\sim$ 10%. However, the resistivity at room temperature and the magnitude of resistivity jump is nearly constant and saturated in the region of oxygen concentration of 10 $\sim$ 20%. These phenomena is considered to be related with the variation of oxygen and barium-vancany concentration near the grain boundary.

  • PDF

Electrical Properties of $Ba_{1-x}(Bi_{0.5}K_{0.5})TiO_3$ according to $(Bi_{0.5}K_{0.5})TiO_3$ for Pb-free PTC (Pb-free PTC에 있어서 $(Bi_{0.5}K_{0.5})TiO_3$ 첨가에 따른 $Ba_{1-x}(Bi_{0.5}K_{0.5})TiO_3$의 전기적특성)

  • Lee, Mi-Jai;Choi, Byung-Hyun;Paik, Jong-Hoo;Kim, Bip-Nam;Lee, Woo-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.35-36
    • /
    • 2008
  • PTC thermistor are characterized by an increase in the electrical resistance with temperature. The PTC materials of middle Curie point were produced or that of high Curie point (above $200^{\circ}C$), it was determined that compositional modifications of $Pb^{2+}$ for $Ba^{2+}$ produce change sin the Curie point to higher temperature. PTC ceramic materials with the Curie point above $120^{\circ}C$ were prepared by adding $PbTiO_3$, PbO or $Pb_3O_4$ into $BaTiO_3$. Thereby, adding $Pb^{2+}$ into $BaTiO_3$-based PTC material to improve Tc was studied broadly, however, weal know that PbO was poisonous and prone to volatilize, then to pollute the circumstance and hurt to people, so we should dope other innocuous additives instead of lead to increase Tc of composite PTC material. In order to prepare lead-free $BaTiO_3$-based PTC with middle Curie point, the incorporation on $Bi_{1/2}K_{1/2}TiO_3$ into $BaTiO_3$-based ceramics was investigated on samples containing 0, 1, 2, 3, 4, and 50mol% of $Bi_{1/2}K_{1/2}TiO_3$. $Bi_{1/2}K_{1/2}TiO_3$ was compounded as standby material by conventional solid-state reaction technique. The starting materials were $Bi_2O_3$, $K_2CO_3$, $BaCO_3$ and $TiO_2$ powder, and using solid-state reaction method, too. The microstructures of samples were investigated by SEM, DSC, XRD and dielectric properties. Phase composition and lattice parameters were investigated by X-ray diffraction.

  • PDF

Effect of $BaTiO_3$ according to $(Bi_{0.5}Na_{0.5})TiO_3$ for Pb-free PTC (Pb-free PTC에 있어서 $(Bi_{0.5}Na_{0.5})TiO_3$ 첨가에 따른 $BaTiO_3$ 효과)

  • Lee, Mi-Jai;Paik, Jong-Hoo;Kim, Sei-Ki;Kim, Bip-Nam;Lee, Woo-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.57-58
    • /
    • 2008
  • PTC thermistor are characterized by an increase in the electrical resistance with temperature. The PTC materials of middle Curie point were produced or that of high Curie point (above $200^{\circ}C$), it was determined that compositional modifications of $Pb^{2+}$ for $Ba^{2+}$ produce change sin the Curie point to higher temperature. PTC ceramic materials with the Curie point above $120^{\circ}C$ were prepared by adding $PbTiO_3$, PbO or $Pb_3O_4$ into $BaTiO_3$. Thereby, adding $Pb^{2+}$ into $BaTiO_3$-based PTC material to improve Tc was studied broadly, however, weal know that PbO was poisonous and prone to volatilize, then to pollute the circumstance and hurt to people, so we should dope other innocuous additives instead of lead to increase Tc of composite PTC material. In order to prepare lead-free $BaTiO_3$-based PTC with middle Curie point, the incorporation on $Bi_{1/2}Na_{1/2}TiO_3$ into $BaTiO_3$-based ceramics was investigated on samples containing 0, 1, 2, 3, 4, and 50mol% of $Bi_{1/2}Na_{1/2}TiO_3$. $Bi_{1/2}Na_{1/2}TiO_3$ was compounded as standby material by conventional solid-state reaction technique. The starting materials were $Bi_{1/2}Na_{1/2}TiO_3$, $BaCO_3$, $TiO_2$ and $Y_2O_3$ powder, and using solid-state reaction method, too. The microstructures of samples were investigated by SEM, DSC, XRD and dielectric properties. Phase composition and lattice parameters were investigated by X-ray diffraction.

  • PDF

Effect of $Na_2Ti_6O_{13}$ on Microstructure and PTCR Characteristics of $BaTiO_2-(Bi_{0.5}Na_{0.5})TiO_3$ ceramics ($Na_2Ti_6O_{13}$ 첨가에 따른 $BaTiO_2-(Bi_{0.5}Na_{0.5})TiO_3$ 세라믹스의 미세구조 및 PTCR 특성에 미치는 영향)

  • Cha, Yu-Joung;Kim, Chul-Min;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo;Lee, Woo-Young;Kim, Dae-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.15-15
    • /
    • 2010
  • $Na_2Ti_6O_{13}$ (NT)가 도핑된 $BaTiO_3-(Bi_{0.5}Na_{0.5})TiO_3$ BBNT) PTCR 세라믹스를 변형된 세라믹공정을 이용하여 제조하였다. 제조된 BBNT 세라믹의 미세구조와 PTCR 특성에 미치는 NT의 효과를 조사하였다. $1300^{\circ}C$에서 합성된 BBNT 세라믹은 NT의 도핑량이 증가함에 따라 비정상적으로 성장된 입자의 수가 증가하였다. 뿐만 아니라, NT의 도핑량 증가는 상온비저항을 약간 증가시켰지만 큐리온도 (Tc) 부근의 최대비저항/최소비저항으로 정의되는 PTC 점프 특성을 크게 향상시켰다. 특히, 0.01mol%의 NT 도핑 시 상온비저항은 $425\;\Omega{\cdot}cm$, PTC 점프는 ($2.02{\times}^10^5$) 저항온도계수는 69.8% 및 Tc는 $155^{\circ}C$의 우수한 결과를 나타내었다.

  • PDF

The Effect of SiO2 on the Microstructure and Electrical Properties of BaTiO3 PTC Thermistor (BaTiO3 PTC 써미스터의 미세구조 및 전기적 특성에 대한 SiO2 영향)

  • Chun, Myoung-Pyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.22-26
    • /
    • 2013
  • PTCR ceramics of $(Ba_{0.998}Sm_{0.002})TiO_3+0.001MnCO_3+xSiO_2$ (x=1, 2, 3, 4, 5, 6 mol%) were fabricated by solid state method. Disk samples of diameter 5 mm and thickness about 1mm were sintered at $1,290^{\circ}C$ for 2 h in reduced atmosphere of $5%H_2-95%N_2$ followed by re-oxidation at $600^{\circ}C$ for 30 min. in $20%O_2-80%N_2$.and their microstructures and electrical properties were investigated with SEM and Multimeter. The color of sintered samples was strongly dependent on $SiO_2$ content showing that the color of samples with $SiO_2$ of 1~2 mol% was gray but that of samples with $SiO_2$ of 4~6 mol% was changed from gray to blue, which seems to be related with the reduction of samples due to the oxygen vacancies created during the sintering in reduced atmosphere. $SiO_2$ content had a great influence on the microstructure and the electrical properties. With increasing $SiO_2$ content, the grain size of samples increased and the resistivity as well as the resistivity jump ($R_{285}/R_{min}$) decreased, which is considered to be attributed to the resistivity change at grain interior and grain boundary due to the fast mass transfer through $SiO_2$ liquide phase during the sintering. Samples with 2 mol% $SiO_2$ has the resistivity of $202{\Omega}cm$ and the resistivity jump of 3.28. It is expected that $SiO_2$ doped $BaTiO_3$ based PTC ceramics can be used for multilayered PTC thermistor due to the resistance to the sintering in reduced atmosphere.

Fabrication of Doped BaTiO3 by Coprecipitation Method (공침법에 의한 반도성 BaTiO3 제조)

  • 안영필;김복희;이태석
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.315-320
    • /
    • 1988
  • The Nb doped BaTiO3 was synthesized by coprecipitation method using H2O2 media in region from pH 8 to pH 11. The powder prepared by using this method was crystallized at about 20$0^{\circ}C$ and average particle size was controlled by heat treatment. Because of preparation having fine particle and relatively narrow particle size distribution, high performance PTC device was made of these precipitated powders.

  • PDF