• Title/Summary/Keyword: centroid of surface

Search Result 31, Processing Time 0.024 seconds

Ocean Surface Current Retrieval Using Doppler Centroid of ERS-1 Raw SAR Data

  • Kim Ji-Eun;Kim Duk-jin;Moon Wooil M.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.590-593
    • /
    • 2004
  • Extraction of ocean surface current velocity offers important physical oceanographic parameters especially on understanding ocean environment. Although Remote Sensing techniques were highly developed, the investigation of ocean surface current using Synthetic Aperture Radar (SAR) is not an easy task. This paper presents the results of ocean surface current observation using Doppler Centroid of ERS-1 SAR data obtained off the coast of Korea peninsula. We employed the concept, in which Doppler frequency shift and the ocean surface current are closely related, to evaluate ocean surface current. Moving targets cause Doppler frequency shift of the back scattered radar waves of SAR, thus the line-of-sight velocity component of the scatters can be evaluated. The Doppler frequency shift can be measured by estimating the difference between Doppler Centroid of raw SAR data and reference Doppler Centroid. Theoretically, the Doppler Centroid is zero; however, squinted antenna which is affected by several physical factors causes Doppler Centroid to be nonzero. The reference Doppler Centroid can be obtained from measurements of sensor trajectory, attitude and Earth model. The estimated Doppler Centroid was compensated by considering the accurate attitude estimation of ERS-1 SAR. We could verify the correspondence between the estimated ocean surface current and observed in-situ data in the error bound.

  • PDF

Surface Centroid TOA Location Algorithm for VLC System

  • Zhang, Yuexia;Chen, Hang;Chen, Shuang;Jin, Jiacheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.277-290
    • /
    • 2019
  • The demand for indoor positioning is increasing day by day. However, the widely used positioning methods today cannot satisfy the requirements of the indoor environment in terms of the positioning accuracy and deployment cost. In the existing research domain, the localization algorithm based on three-dimensional space is less accurate, and its robustness is not high. Visible light communication technology (VLC) combines lighting and positioning to reduce the cost of equipment deployment and improve the positioning accuracy. Further, it has become a popular research topic for telecommunication and positioning in the indoor environment. This paper proposes a surface centroid TOA localization algorithm based on the VLC system. The algorithm uses the multiple solutions estimated by the trilateration method to form the intersecting planes of the spheres. Then, it centers the centroid of the surface area as the position of the unknown node. Simulation results show that compared with the traditional TOA positioning algorithm, the average positioning error of the surface centroid TOA algorithm is reduced by 0.3243 cm and the positioning accuracy is improved by 45%. Therefore, the proposed algorithm has better positioning accuracy than the traditional TOA positioning algorithm, and has certain application value.

Extraction of Exact Layer Thickness of Ultra-thin Gate Dielectrics in Nanoscaled CMOS under Strong Inversion

  • Dey, Munmun;Chattopadhyay, Sanatan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.2
    • /
    • pp.100-106
    • /
    • 2010
  • The impact of surface quantization on device parameters of a Si metal oxide semiconductor (MOS) capacitor has been analyzed in the present work. Variation of conduction band bending, position of discrete energy states, variation of surface potential, and the variation of inversion carrier concentration at charge centroid have been analyzed for different gate voltages, substrate doping concentrations and oxide thicknesses. Oxide thickness calculated from the experimental C-V data of a MOS capacitor is different from the actual oxide thickness, since such data include the effect of surface quantization. A correction factor has been developed considering the effect of charge centroid in presence of surface quantization at strong inversion and it has been observed that the correction due to surface quantization is crucial for highly doped substrate with thinner gate oxide.

Estimation of Ocean Current Velocity near Incheon using Radarsat-1 SAR and HF-radar Data

  • Kang, Moon-Kyung;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.421-430
    • /
    • 2007
  • This paper presents the results of the ocean surface current velocity estimation using 6 Radarsat-1 SAR images acquired in west coastal area near Incheon. We extracted the surface velocity from SAR images based on the Doppler shift approach in which the azimuth frequency shift is related to the motion of surface target in the radar direction. The Doppler shift was measured by the difference between the Doppler centroid estimated in the range-compressed, azimuth-frequency domain and the nominal Doppler centroid used during the SAR focusing process. The extracted SAR current velocities were statistically compared with the current velocities from the high frequency(HF) radar in terms of averages, standard deviations, and root mean square errors. The problem of the unreliable nominal Doppler centroid for the estimation of the SAR current velocity was corrected by subtracting the difference of averages between SAR and HF-radar current velocities from the SAR current velocity. The corrected SAR current velocity inherits the average of HF-radar data while maintaining high-resolution nature of the original SAR data.

Extraction of Ocean Surface Current Velocity Using Envisat ASAR Raw Data (Envisat ASAR 원시자료를 이용한 표층 해류 속도 추출)

  • Kang, Ki-Mook;Kim, Duk-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.11-20
    • /
    • 2013
  • Space-borne Synthetic Aperture Radar(SAR) has been one of the most effective tools for monitoring quantitative oceanographic physical parameters. The Doppler information recorded in single-channel SAR raw data can be useful in estimating moving velocity of water mass in ocean. The Doppler shift is caused by the relative motion between SAR sensor and the water mass of ocean surface. Thus, the moving velocity can be extracted by measuring the Doppler anomaly between extracted Doppler centroid and predicted Doppler centroid. The predicted Doppler centroid, defined as the Doppler centroid assuming that the target is not moving, is calculated based on the geometric parameters of a satellite, such as the satellite's orbit, look angle, and attitude with regard to the rotating Earth. While the estimated Doppler shift, corresponding to the actual Doppler centroid in the situation of real SAR data acquisition, can be extracted directly from raw SAR signal data, which usually calculated by applying the Average Cross Correlation Coefficient(ACCC). The moving velocity was further refined to obtain ocean surface current by subtracting the phase velocity of Bragg-resonant capillary waves. These methods were applied to Envisat ASAR raw data acquired in the East Sea, and the extracted ocean surface currents were compared with the current measured by HF-radar.

Trademark Image Retrieval System (상표 영상 검색 시스템)

  • Shin, Seong-Yoon;Baik, Seong-Eun;Pyo, Seong-Bae;Rhee, Yang-Won
    • KSCI Review
    • /
    • v.15 no.1
    • /
    • pp.185-190
    • /
    • 2007
  • An image retrieval system is a piece of software that searches identical or similar images based on various image-specific features. This paper proposes a trademark image retrieval system that uses image colors and forms. In the proposed system, input images are segmented into several other regions, and color distribution histograms for different regions are extracted for use as color information. The proposed system uses form information through the preprocessing process such as boundary surface extraction, centroid extraction, angular sampling and, and through calculating the sums of the distances between the centroid and the boundary surfaces, standard deviations, and the ratios between long and short axes. Like this, the color and form information extracted is used to perform retrieval through measuring similarity.

  • PDF

Analysis Method of X-Ray Diffraction Characteristic Values and Measured Strain for Steep Stress Gradient of Metal Material Surface Layer (금속재료 표면층의 급격한 응력구배에 대한 X-Ray회절 특성값과 측정된 변형률의 해석방법)

  • Chang-Suk Han;Chan-Woo Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.2
    • /
    • pp.54-62
    • /
    • 2023
  • The most comprehensive and particularly reliable method for non-destructively measuring the residual stress of the surface layer of metals is the sin2ψ method. When X-rays were used the relationship of εφψ-sin2ψ measured on the surface layer of the processing metal did not show linearity when the sin2ψ method was used. In this case, since the effective penetration depth changes according to the changing direction of the incident X-ray, σφ becomes a sin2ψ function. Since σφ cannot be used as a constant, the relationship in εφψ-sin2ψ cannot be linear. Therefore, in this paper, the orthogonal function method according to Warren's diffraction theory and the basic profile of normal distribution were synthesized, and the X-ray diffraction profile was calculated and reviewed when there was a linear strain (stress) gradient on the surface. When there is a strain gradient, the X-ray diffraction profile becomes asymmetric, and as a result, the peak position, the position of half-maximum, and the centroid position show different values. The difference between the peak position and the centroid position appeared more clearly as the strain (stress) gradient became larger, and the basic profile width was smaller. The weighted average strain enables stress analysis when there is a strain (stress) gradient, based on the strain value corresponding to the centroid position of the diffracted X-rays. At the 1/5 Imax max height of X-ray diffraction, the position where the diffracted X-ray is divided into two by drawing a straight line parallel to the background, corresponds approximately to the centroid position.

Some Characterizations of Catenary Rotation Surfaces

  • Kim, Dong-Soo;Kim, Young Ho;Yoon, Dae Won
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.4
    • /
    • pp.667-676
    • /
    • 2017
  • We study the positive $C^1$ function z = f(x, y) defined on the plane ${\mathbb{R}}^2$. For a rectangular domain $[a,b]{\times}[c,d]{\subset}{\mathbb{R}}^2$, we consider the volume V and the surface area S of the graph of z = f(x, y) over the domain. We also denote by (${\bar{x}}_V,\;{\bar{y}}_V,\;{\bar{z}}_V$) and (${\bar{x}}_S,\;{\bar{y}}_S,\;{\bar{z}}_S$) the geometric centroid of the volume under the graph of z = f(x, y) and the centroid of the graph itself defined on the rectangular domain, respectively. In this paper, first we show that among nonconstant $C^2$ functions with isolated singularities, S = kV, $k{\in}{\mathbb{R}}$ characterizes the family of catenary rotation surfaces f(x, y) = k cosh(r/k), $r={\mid}(x,y){\mid}$. Next, we show that one of $({\bar{x}}_S,\;{\bar{y}}_S)=({\bar{x}}_V,\;{\bar{y}}_V)$, $({\bar{x}}_S,\;{\bar{z}}_S)=({\bar{x}}_V,\;2{\bar{z}}_V)$ and $({\bar{y}}_S,\;{\bar{z}}_S)=({\bar{y}}_V,\;2{\bar{z}}_V)$ characterizes the family of catenary rotation surfaces among nonconstant $C^2$ functions with isolated singularities.

A Study on the Effective Free Surface of Fluid Cargo (유동화물의 유효자유표면에 관한 연구)

  • Hur, I.;Wang, J.S.
    • Journal of the Korean Institute of Navigation
    • /
    • v.11 no.2
    • /
    • pp.73-88
    • /
    • 1987
  • It is well known that the height of tank metacenter above the centroid of fluid in a tank is given by i/v where I is the inertia moment of free surface and v is the fluid volume. It is supposed in this formula that the inclination of ship is small and that the free surface of fluid do not touch the top and the bottom of tank. It the inclination of ship is large, the height of tank metacenter may be possibly greater than that given by i/v. The height of tank metacenter is smaller than i/v when the free surface of fluid touch the top or the bottom of tank. The reasonable method to calculate the height of tank metacenter is presented in this paper and prepared in FORTRAN program by FUNCTION EFFRES. The approximate formula was also developed and given by $g_m=(1+\frac{2}{1}tan^2\theta)[1-EXP\{-12(\frac{\alpha(1-\alpha)k}{tan\theta})^{1.25}\}]\frac{i}{v}$ where $g_m$ is the distance from the centroid of fluid to the tank metacenter, $\theta$ is inclined angle of ship, $\alpha$ is the ratio of filled volume to tank capacity and k is the ratio of the depth to the width of tank. The values calculated by the approximate formula given in this paper were compared with the exact values from the computer program and proved out to be sufficiently precise for practical use.

  • PDF

Measurement of Residual Stress Distribution in the Depth Direction of Annealed Materials of Lapped Bearing Steel Using Weighted Averaging Analysis Method (가중평균 해석법을 이용한 래핑된 베어링강 어닐링재료의 깊이방향에 대한 잔류응력분포 측정)

  • Chang-Suk Han;Chan-Woo Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.205-213
    • /
    • 2023
  • This paper reports the results of an experimental examination using X-rays to test annealing materials for lapped bearing steel (STB2), to confirm the validity of the weighted averaging analysis method. The distribution behavior for the α𝜓-sin2𝜓 diagram and the presence or absence of differences in the peak method, half-value breadth method, and centroid method were investigated. When lapping the annealed bearing steel (STB2) material, a residual stress state with a non-directional steep gradient appeared in the surface layer, and it was found that the weighted averaging analysis method was effective. If there is a steep stress gradient, the sin2𝜓 diagram is curved and the diffraction intensity distribution curve becomes asymmetric, resulting in a difference between the peak method, half-value breadth method, and centroid method. This phenomenon was evident when the stress gradient was more than 2~3 kg/mm2/㎛. In this case, if the position of the diffraction line is determined using the centroid method and the weighted averaging analysis method is applied, the stress value on the surface and the stress gradient under the surface can be obtained more accurately. When the stress gradient becomes a problem, since the curvature of the sin2𝜓 diagram appears clearly in the region of sin2𝜓 > 0.5, it is necessary to increase the inclination angle 𝜓 as much as possible. In the case of a lapping layer, a more accurate value can be obtained by considering 𝜎3 in the weighted averaging analysis method. In an isotropic biaxial residual stress state, the presence or absence of 𝜎3 can be determined as the presence or absence of strain for sin2𝜓≈0.4.