• Title/Summary/Keyword: centroid neural network

Search Result 27, Processing Time 0.02 seconds

Data Clustering using a Neural Network for Anomaly Detection (비정상 행위 탐지를 위한 신경망 기반의 데이터 클러스터링)

  • 김인영;장병탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.31-34
    • /
    • 2000
  • 코호넨 자기조직 신경망을 사용하면 클러스터링뿐만 아니라 그 데이터가 할당된 클러스터의 대표값(Centroid)과의 거리 차이(Quantization Error)를 알아볼 수 있다 이를 이용하면 어떤 데이터가 정상적인 분포를 따르는지 정상적인 분포에서 벗어나는 비정상적인 데이터인지 알 수 있고, 유닉스 시스템 사용자의 명령어 사용 패턴에 적용하여 어떤 사용자의 명령어 사용 패턴이 정상적인 것인지 비정상적인 것인지 알 수 있다. 본 논문에서는 유닉스 시스템 사용자 8명의 명령어 패턴을 클러스터링한 후 Quantization Error를 이용하여 비정상 패턴을 탐지하는 오프라인에서의 비정상 행위를 탐지하는 시스템을 구현하였다. 그리고 통계적인 학습 방법을 적용한 비정상 패턴 탐지와의 비교를 통하여 두 가지 비정상 패턴 탐지 결과가 동일함을 확인하였다.

  • PDF

Robust Planar Shape Recognition Using Spectrum Analyzer and Fuzzy ARTMAP (스펙트럼 분석기와 퍼지 ARTMAP 신경회로망을 이용한 Robust Planar Shape 인식)

  • 한수환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.34-42
    • /
    • 1997
  • This paper deals with the recognition of closed planar shape using a three dimensional spectral feature vector which is derived from the FFT(Fast Fourier Transform) spectrum of contour sequence and fuzzy ARTMAP neural network classifier. Contour sequences obtained from 2-D planar images represent the Euclidean distance between the centroid and all boundary pixels of the shape, and are related to the overall shape of the images. The Fourier transform of contour sequence and spectrum analyzer are used as a means of feature selection and data reduction. The three dimensional spectral feature vectors are extracted by spectrum analyzer from the FFT spectrum. These spectral feature vectors are invariant to shape translation, rotation and scale transformation. The fuzzy ARTMAP neural network which is combined with two fuzzy ART modules is trained and tested with these feature vectors. The experiments including 4 aircrafts and 4 industrial parts recognition process are presented to illustrate the high performance of this proposed method in the recognition problems of noisy shapes.

  • PDF

e-Learning Course Reviews Analysis based on Big Data Analytics (빅데이터 분석을 이용한 이러닝 수강 후기 분석)

  • Kim, Jang-Young;Park, Eun-Hye
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.423-428
    • /
    • 2017
  • These days, various and tons of education information are rapidly increasing and spreading due to Internet and smart devices usage. Recently, as e-Learning usage increasing, many instructors and students (learners) need to set a goal to maximize learners' result of education and education system efficiency based on big data analytics via online recorded education historical data. In this paper, the author applied Word2Vec algorithm (neural network algorithm) to find similarity among education words and classification by clustering algorithm in order to objectively recognize and analyze online recorded education historical data. When the author applied the Word2Vec algorithm to education words, related-meaning words can be found, classified and get a similar vector values via learning repetition. In addition, through experimental results, the author proved the part of speech (noun, verb, adjective and adverb) have same shortest distance from the centroid by using clustering algorithm.

CNN-based Building Recognition Method Robust to Image Noises (이미지 잡음에 강인한 CNN 기반 건물 인식 방법)

  • Lee, Hyo-Chan;Park, In-hag;Im, Tae-ho;Moon, Dai-Tchul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.341-348
    • /
    • 2020
  • The ability to extract useful information from an image, such as the human eye, is an interface technology essential for AI computer implementation. The building recognition technology has a lower recognition rate than other image recognition technologies due to the various building shapes, the ambient noise images according to the season, and the distortion by angle and distance. The computer vision based building recognition algorithms presented so far has limitations in discernment and expandability due to manual definition of building characteristics. This paper introduces the deep learning CNN (Convolutional Neural Network) model, and proposes new method to improve the recognition rate even by changes of building images caused by season, illumination, angle and perspective. This paper introduces the partial images that characterize the building, such as windows or wall images, and executes the training with whole building images. Experimental results show that the building recognition rate is improved by about 14% compared to the general CNN model.

Alphabetical Gesture Recognition using HMM (HMM을 이용한 알파벳 제스처 인식)

  • Yoon, Ho-Sub;Soh, Jung;Min, Byung-Woo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.384-386
    • /
    • 1998
  • The use of hand gesture provides an attractive alternative to cumbersome interface devices for human-computer interaction(HCI). Many methods hand gesture recognition using visual analysis have been proposed such as syntactical analysis, neural network(NN), Hidden Markov Model(HMM) and so on. In our research, a HMMs is proposed for alphabetical hand gesture recognition. In the preprocessing stage, the proposed approach consists of three different procedures for hand localization, hand tracking and gesture spotting. The hand location procedure detects the candidated regions on the basis of skin-color and motion in an image by using a color histogram matching and time-varying edge difference techniques. The hand tracking algorithm finds the centroid of a moving hand region, connect those centroids, and thus, produces a trajectory. The spotting a feature database, the proposed approach use the mesh feature code for codebook of HMM. In our experiments, 1300 alphabetical and 1300 untrained gestures are used for training and testing, respectively. Those experimental results demonstrate that the proposed approach yields a higher and satisfying recognition rate for the images with different sizes, shapes and skew angles.

  • PDF

Real Time Environmental Classification Algorithm Using Neural Network for Hearing Aids (인공 신경망을 이용한 보청기용 실시간 환경분류 알고리즘)

  • Seo, Sangwan;Yook, Sunhyun;Nam, Kyoung Won;Han, Jonghee;Kwon, See Youn;Hong, Sung Hwa;Kim, Dongwook;Lee, Sangmin;Jang, Dong Pyo;Kim, In Young
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.8-13
    • /
    • 2013
  • Persons with sensorineural hearing impairment have troubles in hearing at noisy environments because of their deteriorated hearing levels and low-spectral resolution of the auditory system and therefore, they use hearing aids to compensate weakened hearing abilities. Various algorithms for hearing loss compensation and environmental noise reduction have been implemented in the hearing aid; however, the performance of these algorithms vary in accordance with external sound situations and therefore, it is important to tune the operation of the hearing aid appropriately in accordance with a wide variety of sound situations. In this study, a sound classification algorithm that can be applied to the hearing aid was suggested. The proposed algorithm can classify the different types of speech situations into four categories: 1) speech-only, 2) noise-only, 3) speech-in-noise, and 4) music-only. The proposed classification algorithm consists of two sub-parts: a feature extractor and a speech situation classifier. The former extracts seven characteristic features - short time energy and zero crossing rate in the time domain; spectral centroid, spectral flux and spectral roll-off in the frequency domain; mel frequency cepstral coefficients and power values of mel bands - from the recent input signals of two microphones, and the latter classifies the current speech situation. The experimental results showed that the proposed algorithm could classify the kinds of speech situations with an accuracy of over 94.4%. Based on these results, we believe that the proposed algorithm can be applied to the hearing aid to improve speech intelligibility in noisy environments.

Hierarchical Grouping of Line Segments for Building Model Generation (건물 형태 발생을 위한 3차원 선소의 계층적 군집화)

  • Han, Ji-Ho;Park, Dong-Chul;Woo, Dong-Min;Jeong, Tai-Kyeong;Lee, Yun-Sik;Min, Soo-Young
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.95-101
    • /
    • 2012
  • A novel approach for the reconstruction of 3D building model from aerial image data is proposed in this paper. In this approach, a Centroid Neural Network (CNN) with a metric of line segments is proposed for connecting low-level linear structures. After the straight lines are extracted from an edge image using the CNN, rectangular boundaries are then found by using an edge-based grouping approach. In order to avoid producing unrealistic building models from grouping lined segments, a hierarchical grouping method is proposed in this paper. The proposed hierarchical grouping method is evaluated with a set of aerial image data in the experiment. The results show that the proposed method can be successfully applied for the reconstruction of 3D building model from satellite images.