• Title/Summary/Keyword: centrifugal fields

Search Result 65, Processing Time 0.025 seconds

A Study on the Performance Characteristics of the 2-D Centrifugal Turbomachinery (2차원 원심식 터보기계의 성능특성에 관한 연구)

  • 최민선;김춘식;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.43-51
    • /
    • 1994
  • The design technique of turbo pumps has been developed due to an increasing demand from related industrial fields. But infant stage of turbomachinery in the domestic industry needs more fundamental design method. Among various types of pumps, centrifugal pump was chosen because of its wide industrial application. It is difficult to decide the correct specification of centrifugal impeller, because of its complex flow analysis at the inlet, passage and outlet. This study is limited on the impeller blade design and its related performance analysis.

  • PDF

The Size Distribution of Free Water Paths in Heartwood of Softwood by Centrifugal Method - The Difference between Earlywood and Latewood - (원심법에 의한 침엽수 심재부 유효수분이동경로의 반경분포 - 조재와 만재의 비교 -)

  • Park, Jong Su;Chun, Su Kyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.61-70
    • /
    • 2003
  • The size distribution of the free water paths between earlywood and latewood for six species in the heartwood of softwoods was estimated from the amount of dehydrated free water under various centrifugal fields, such as 2,200, 3,300, 4,800 and 6,900 rpm. The centrifugal method is based on the concept that water movement occurs by the balance of centrifugal force and water potential by meniscus. Water stops where the pressure differential is zero. In the centrifugal field, only two factors affect water movement in wood, that is, centrifugal force and water potential. Also, the water permeability was evaluated from the relationship between the water saturation ratio after the centrifugal treatment and the measure of water potential in specimen. The results showed that Cryptpmeria japonica had clear peaks at 0.70 ㎛ in earlywood and at 0.50 ㎛ in latewood. Tsuga sieboldii and Larix kaemferi had peaks at 0.50 and 0.30 ㎛ in both earlywood and latewood, respectively. Abies firma showed peaks at 0.70 ㎛ in earlywood and at 0.30 ㎛ in latewood. The water permeability of earlywood was higer than that of latewood for all softwoods except Pseudotsuga menziesii.

Numerical Study of the Thermal Effects on the Centrifugal Instability (온도 분포가 원심 불안정성에 미치는 영향에 대한 전산해석적 연구)

  • Hwang Jong-Yeon;Mutabazi Innocent;Lee Sung-Su;Yoon Dong-Hyeog;Yang Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.578-586
    • /
    • 2006
  • Numerical simulations are carried out to investigate the thermal effects of the gravitational potential on the centrifugal instability of a Taylor-Couette flow, and to further study the detailed flow fields and flow bifurcations to spiral vortices. The effects of centrifugal potential on the centrifugal instability are also investigated in the current study. Spiral vortices have various types of mode depending on Grashof number and Reynolds number. The correlation of Richardson number with the spiral angle of the spiral vortices shows that the structure of the spiral vortices strongly depends on the Richardson number. The heat transfer rate of the inner cylinder increases with increasing Grashof number. It is also confirmed that the torque required to rotate the inner cylinder increases as Grashof number increases.

Effects of Asymmetric Tip Clearance on Centrifugal Compressor Flow (비대칭 팁간극이 원심압축기의 유동에 미치는 영향)

  • Yoon, Yong-Sang;Song, Seung-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.533-541
    • /
    • 2005
  • Compared to axial compressors, an analytical model capable of analyzing the flow in centrifugal compressor lacks because of the difficulty in governing equations for radial duct. Therefore, this paper presents a new model to predict flow field in a centrifugal compressor with a sinusoidal asymmetric tip clearance. To predict the 2 dimensional flow in the inlet and exit of the centrifugal compressor, the two flow fields are connected with compressor characteristic based on Moore-Greitzer model. Contrary to axial compressors, the nonuniformity of impeller exit pressure in centrifugal compressor decreases as flow coefficient decreases. In addition, that is sensitive to the slope of pressure rise by eccentricity. The maximum velocity exists right before the maximum tip clearance.

  • PDF

Numerical Analysis on the Low Momentum Fluid Flow Characteristics in Centrifugal Pump Impeller (원심 펌프 회전차 내부의 저 운동량 유동특성에 관한 수치적 연구)

  • 김세진;김동원;김윤제
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.151-157
    • /
    • 1999
  • In this study, tile characteristics of three dimensional flow fields in centrifugal flump impeller are investigated by numerically. Detailed analysis and understanding of flow field in centrifugal pump are very important to predict performance of components. The three dimensional viscous fluid flow in centrifugal pump is distingushed isentropic process region from irreversible process region by wall shear effect, secondary flow, centrifugal and Coriolis forces, variation of boudary layers. Development of low momentum region by viscous fluid flow in the centrifugal impeller causes stall and blockage which is irreversible process region, and resulting in decrease of the performance and efficiency of centrifugal pump. Especially, the result is that Coriolis and centrifugal forces are most powerful factors which are increasing the irreversible region.

  • PDF

An Experimental Study on the Flow Characteristics of Axial Flow Fan with Centrifugal Sub-Blade (원심형 보조날개를 부착한 축류홴의 유동특성에 관한 실험적 연구)

  • Lee, Sukjong;Sung, Jaeyong;Lee, Myeong-Ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.9 no.3
    • /
    • pp.19-25
    • /
    • 2013
  • A new type axial flow fan with centrifugal sub-blades has been designed and fabricated in the present study. We investigated velocity and pressure distributions in downstream flow fields of the fan experimentally to detect the detailed flow characteristics of new axial flow fan and an existing axial flow fan. Two-dimensional velocity components were probed by applying a particle image velocimetry system and pressure distributions were measured by Pitot tube and micro-manometer. Our results show that the velocity and pressure distributions at the flow fields of the new fan are quite different from the existing fan, and that the centrifugal sub-blades in the new fan can improve the performance characteristics in view of kinetic energy.

Influence of Blade Outlet Angle and Blade Thickness on Performance and Internal Flow Conditions of Mini Centrifugal Pump

  • Shigemitsu, Toru;Fukutomi, Junichiro;Kaji, Kensuke
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.3
    • /
    • pp.317-323
    • /
    • 2011
  • Mini centrifugal pumps having a diameter smaller than 100mm are employed in many fields; automobile radiator pump, ventricular assist pump, cooling pump for electric devices and so on. Further, the needs for mini centrifugal pumps would become larger with the increase of the application of it for electrical machines. It is desirable that the mini centrifugal pump design be as simple as possible as precise manufacturing is required. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Therefore, we started research on the mini centrifugal pump for the purpose of development of high performance mini centrifugal pumps with simple structure. Three types of rotors with different outlet angles are prepared for an experiment. The performance tests are conducted with these rotors in order to investigate the effect of the outlet angle on performance and internal flow condition of mini centrifugal pumps. In addition to that, the blade thickness is changed because blockage effect in the mini centrifugal pump becomes relatively larger than that of conventional pumps. On the other hand, a three dimensional steady numerical flow analysis is conducted with the commercial code (ANSYS-Fluent) to investigate the internal flow condition. It is clarified from the experimental results that head of the mini centrifugal pump increases according to the increase of the blade outlet angle and the decrease of the blade thickness. In the present paper, the performance of the mini centrifugal pump is shown and the internal flow condition is clarified with the results of the experiment and the numerical flow analysis. Furthermore, the effects of the blade outlet angle and the blade thickness on the performance are investigated and the internal flow of each type of rotor is clarified by the numerical analysis results.

On Validation to the Three-Dimensional Multigrid Calculations of Rotating Impeller Flows in Centrifugal Compressors (멀티그리드 기법을 이용한 원심압축기 임펠러의 3차원 회전유동 전산해석에 대한 검증)

  • Chang K. H.;Moon Y. J.
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.30-36
    • /
    • 1998
  • The three dimensional Navier-Stokes equations in rotational coordinate are solved using a multigrid algorithm for the calculations of turbulent flows in centrifugal compressor impellers. Some numerical studies are made in applying the multigrid algorithm for the turbulent flow calculations with the standard κ-ε equations. The present method is used to calculate the flow fields of Mizuki's B-type and Niigata Ms. 350 centrifugal compressor impellers. Fast convergent steady-state solutions are carefully examined, comparing the static pressure distributions along the impeller flow passage and also in the diffuser with experimental data. Performance of a centrifugal compressor system is also numerically validated by comparing the performances of the impeller and the diffuser individually.

  • PDF

Experimental investigation of impeller-volute interaction on a centrifugal turbomachinery (원심형 터보기계의 임펠러-볼류트 유동간섭에 관한 실험적 연구)

  • Lee, Kyung-Hoon;Joo, Won-Gu
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.219-225
    • /
    • 2000
  • Primary function of a centrifugal compressor volute is to serve the flow from the impeller and diffuser to pipe system. But losses in volutes at off-design lead to poor stage efficiency and reduction of operating range. This is largely caused by the interaction between the impeller and volute flow fields. The magnitude of distortion is increased as the operating point is away from the design point and, as a result, the interaction between the impeller and volute is stronger. The objective of present study is to find the characteristics of tile flow in the diffuser and volute of the centrifugal compressor with rectangular cross-sectional volute. The measurements are carried out in two cases with the existence and nonexistence of the volute casing. The detailed pressure is presented by comparing the experimental results obtained at two cases with each others.

  • PDF

Experimental Study on the Mean Flow Characteristics of Forward-Curved Centrifugal Fans

  • Kwon, Eui-Yong;Cho, Nam-Hyo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1728-1738
    • /
    • 2001
  • Measurements have been made in an automotive HVAC b1ower for two different centrifugal fans. This work is directed at improving the performance of a conventional forward-curved centrifugal fan for a given small blower casing. Mean velocities and pressure have been measured using a miniature five-hole probe and a pressure scanning unit connected to an online data acquisition system. First, we obtained the fan performance versus flow rates showing a significant attenuation of unstable nature achieved with the new fan rotor in the surging operation range. Second, aerodynamic characterizations were carried out by investigating the velocity and pressure fields in the casing flow passage for different fan operating conditions. The measurements stowed that performance coefficients are strongly influenced by flow characteristics at the throat region. The main flow features ware common in both fans, but improved performance is achieved with tole new fan rotor, particularly in lower flow rate legions. Based on the measured results, design improvements were carried out in an acceptable operation range, which gave considerable insight into what features of flow behavior ware most important.

  • PDF