• Title/Summary/Keyword: central slot

Search Result 39, Processing Time 0.023 seconds

Slot Correction by the Frechet Flaps in Hair Restoration Surgery (두발재건 환자에서 Frechet 피판술을 이용한 선상 반흔제거)

  • Shim, Jae Sun;Yoon, Eul Sik;Kim, Deok Woo;Dhong, Eun Sang;Yoo, Sang Chul
    • Archives of Plastic Surgery
    • /
    • v.34 no.3
    • /
    • pp.342-345
    • /
    • 2007
  • Purpose: A common side effect of the scalp reduction is a creation of a 'slot' with the hair growing in the opposite directions away from the scar. Overcoming the unnatural appearance of the slot has been a vexing problem in the scalp reduction surgery. None of the conventional corrective surgical techniques provides a complete and satisfactory aesthetic result. The Frechet flap is a triple transposition flap used for the correction of the slot defect secondary to scalp reduction surgery, seldom needing further scar revision. The Frechet technique provides a solution to the problem of the central slot concealment that is unattainable by other means, such as; Z-plasty and mini-graft. Methods: Authors applied the Frechet technique to Asian patients who had undergone scalp reduction and operated on 4 patients from March, 2000 to January, 2001. Average follow-up period was 13 months. Patients with long scars passing through the temporoparietoccipital zone were excluded. All the undermining was performed in the subgaleal plane, reaching the upper auricular sulcus and stopping just above the nuchal ridge. Results: None of the patients experienced infection, hematoma, nor any permanent hair loss. Transient telogen effluvium at the distal end of flap 2 and 3 was noticeable in one case. Conclusion: In conclusion, the results are aesthetically satisfactory without any significant complications.

Comparative Analysis of Stress Distribution in Composite Resin Brackets with Metal Slot of Permanent Maxillary Central Incisor Using the Finite Element Method: A Pilot Study

  • Im, Jae-Jung;Song, Jae-Joon;Kim, Nan-Hee;Heo, Jin-Young;Jung, Gyu-Un;Hwang, Kyung-Gyun;Park, Chang-Joo
    • Journal of Korean Dental Science
    • /
    • v.4 no.2
    • /
    • pp.46-51
    • /
    • 2011
  • Purpose: For aesthetic reasons, composite resin brackets are widely used. However, related studies are rare. This pilot study sought to compare the stress distributions in two commercially available composite resin brackets with metal slot. Materials and Methods: Two commercially available resin brackets -- full-metal slot resin bracket (fSRB) and partial-metal slot resin bracket (pSRB) with straight wire appliance dimension of $0.022{\times}0.028$ in -- were selected. In each bracket, 3-dimensional finite element models were constructed, and stress level was evaluated using finite element analysis. By loading the tipping force and torsion moment, which are similar to those applied by the stainless steel rectangular wire ($0.019{\times}0.025$ -in), stress distributions were calculated, and von Mises stress values were obtained. Results: In pSRB and fSRB, the stress value of the torque moment was much higher than that of the tipping force. The pSRB showed higher stress value than fSRB in both tipping force and torque moment because of the difference in size and configuration of the metal frame inserted into the slot. More stress was also found to be concentrated on the slot area than the wing area in fSRB. Conclusion: The slot form of fSRB was found to be more resistant to the stress of tipping and torque than the slot form of pSRB. In addition, the slot areas -- rather than the wing areas -- of the bracket showed breakage susceptibility. Therefore, resistance to the torque moment on the slot area should be considered in bracket design.

Experimental Study of the Fire Behavior of CFT Columns in Relation to the Sectional Shape & Size (단면형상 및 크기에 따른 콘크리트 충전강관(CFT) 기둥의 화재거동에 관한 실험적 연구)

  • Cho, Bum-Yean;Kim, Heung-Youl;Kwon, Ki-Seok;Yang, Seung-Cho
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.9-16
    • /
    • 2017
  • In this study, fire resistance tests were conducted to evaluate the fire resistance performance of unprotected and non-welded CFT columns in relation to the shape and size of cross-sections. Unprotected slot-type CFT columns which were ${\square}300$ and ${\square}500$ in dimensions resisted fire for 125 minutes and more than 180 minutes, respectively. Strain analysis showed that slot-type CFT columns were more ductile than welded CFT columns. The temperatures of central parts measured when welded CFT columns and slot-type CFT columns had lost fire resistance performance were higher in the former than the latter. Therefore, slot connection does not a great influence on the temperatures inside the concrete.

The Analysis of Wind Hole Effect for The Bangpae Kite (방패연의 방구멍 효과에 대한 분석)

  • Kang, Chi-Hang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.561-566
    • /
    • 2014
  • Our Korean traditional cultural inheritance Bangpae Kite has the stable rectangular shield shape decorated with artistic paint or poem and a good flight performance due to the central wind hole. In this paper, to analyse the wind hole effect to kite performance we performed the wind tunnel testing of the various design factor of kite model and air flow visualization passing through the wind hole. As the result of aerodynamic analysis, we knew that the wind hole of kite displays similar function of slot system for the wing high lift device. This fact demonstrates that our ancestor understood the function of slot system and applied effectively to the development of kite flight performance.

Experimental Study and Process Optimization for Vibration-assisted Dry Micro-WEDM (진동을 이용한 건식 마이크로-WEDM 에 대한 실험적 연구 및 프로세스 최적화)

  • Hoang, Kien Trung;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.215-222
    • /
    • 2014
  • This paper presents an experimental study of a vibration-assisted dry micro-wire electrical discharge machining (${\mu}$-WEDM) utilized in high precision and micro-manufacturing area. The assisted vibration was applied to the workpiece using a piezoelectric actuator, and high pressure air was injected directly into the machining gap through a nozzle. Investigation experiments were performed to estimate the importance of input parameters and it was observed from experiment results that the width (kerf) of the cutting slot and the machining time were significantly affected by the air injection pressure and input energy. Moreover, it was also observed that there exists an optimal relationship between the machining time and input parameters including the air pressure and vibration frequency and amplitude. Central composite design based experiments were also carried out, and empirical models of the machining time and cutting slot kerf have been developed using the response surface methodology to analyze and optimize the process.

Automated Protein-Expression Profiling System using Crude Protein Direct Blotting Method

  • Kobayashi, Hironori;Torikoshi, Yasuhiro;Kawasaki, Yuko;Ishihara, Hideki;Mizumoto, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2356-2361
    • /
    • 2003
  • Proteome research in the medical field is expected to accelerate the understanding of disease mechanism, and to create new diagnostic concept. For protein profiling, this paper proposes a new methodology named CPDIB (Crude Protein Direct Blotting). In the CPDIB procedure, crude protein sample is directly immobilized on a membrane and the expression of protein molecules in the sample are analyzed quantitatively by using a special device called ImmobiChip, where the membrane is used as a field of the immune reaction. The over-all structure of the ImmobiChip is based on the conventional Slot blot device. Mechanical improvement in the air-tightness of the case holding the membrane realizes the direct blotting and results in high performance of stability in the immune reaction. In the measurement of multiple proteins, a dispensing robot is used for increasing the efficiency of handling of liquid. Cooperation of the dispensing robot with the ImmobiChip for immobilizing proteins realizes automated and stable performance of the CPDIB procedure. This paper shows the evaluation of the air-tightness of the ImmobiChip, the ability of analyzing proteins using the CPDIB procedure and the performance of the automated equipment.

  • PDF

THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS ON RECIPROCAL ACTION BY TORQUE APPLICATION IN MAXILLARY ARCHWIRE (상악호선에 torque 부여시 나타나는 상반작용에 관한 유한요소법적 연구)

  • Hwang, Chee-Il;Suhr, Cheong-Hoon
    • The korean journal of orthodontics
    • /
    • v.24 no.2
    • /
    • pp.479-508
    • /
    • 1994
  • This study was designed to investigate the reciprocal movement which was derived form application of active torque in ideal archwire by computer-aided three-dimensional finite element analysis of maxillary teeth and surrounding periodontal ligament composed of 2617 elements and 3725 nodes. Ideal archwire model was also made using the beam elements and the contact between the wire and the bracket slot was made using the gap element. In this study non-linear elastic behaviors of contact between the wire and the bracket slot were considered on. We put the active torque between the lateral and cenral incisor and between the second premolar and the first molar with/without cinch-back. The results were expressed by quantitative and visible ways. The findings of this study were as follows: 1. Reciprocal actions to active torque were complex system consisting of a combination of counter-torque, bucco-lingual linear displacement and tipping, rotation of the teeth, occluso-gingival linear displacement. 2. When active anterior crown labial torque was applied, crown labial tippings of the lateral were the greatest, and those of the central incisor was the next, Crown lingual tippings of the canine and the first premolar, mesial rotations and extrusion of the lateral and distal rotations and intrusion of the canine occurred. When anterior torque with the cinch-back was applied, amount of crown labial tippings of the lateral and central incisor were reduced. Amount of crown lingual tipping of the canine and the first premolar were increased. Mesial tippings and mesial rotations of the second molar occurred. 3. When active posterior crown lingual torque was applied, crown lingual tippings of the first moalr were the greatest, and crown labial tippings of the second premolar and the first premolar were the next, the crown lingual tipping of the second molar were a little. Mesial rotations of the second premolar occurred but those of the first premolar didn't occurred.

  • PDF

Anterior and Posterior Overjet for Clinical Arch Coordination using 3-dimensional Analysis

  • Lee, Young-Wuk;Bayome, Mohamed;Baek, Seung-Hak;Kook, Yoon-Ah
    • Journal of Korean Dental Science
    • /
    • v.2 no.2
    • /
    • pp.18-23
    • /
    • 2009
  • Introduction : The purposes of this study were to analyze the differences between the anterior and posterior overjets using bracket slot points, and compare two methods of overjet calculation according to different reference points using clinical bracket points on three-dimensional digital models. Methods : A total of 35 normal occlusion models were scanned using a three-dimensional scanner (Orapix$^{(R)}$, Orapix Co., Ltd, Seoul, Korea) and then, virtual brackets (0.022" Slot MBT preadjusted brackets, 3 M Co.CA. USA) were placed on the digital models using virtual setup program (3Txer$^{(R)}$ ver. 1.9.6, Orapix co., Ltd). Archwire-like curves were designed to analyze labial and buccal overjet. Results : There were no statistically significance differences between the right and left overjet and between genders. The average overjet was found to be $1.67{\pm}0.85mm$ at the central incisor area, $2.16{\pm}0.88mm$ at the second premolar and $1.53{\pm}0.71mm$ at the first molar. Conclusion : It is recommended that overjet of individualized upper and lower arch to be 2.0mm at the anterior and posterior teeth.

  • PDF

Analysis of Temperature and Surface Roughness in Aerosol Dry Lubrication (ADL) Machining for Titanium (티타늄의 에어로졸 건조 윤활(ADL) 가공에서 온도 및 표면거칠기 분석)

  • Jeong Sik Han;Jong Yun Jung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.61-69
    • /
    • 2022
  • The function of coolant in machining is to reduce the frictional force in the contact area in between the tool and the material, and to increase the precision by cooling the work-piece and the tool, to make the machining surface uniform, and to extend the tool life. However, cutting oil is harmful to the human body because it uses chlorine-based extreme pressure additives to cause environmental pollutants. In this study, the effect of cutting temperature and surface roughness of titanium alloy for medical purpose (Ti-6Al-7Nb) in eco-friendly ADL slot shape machining was investigated using the response surface analysis method. As the design of the experiment, three levels of cutting speed, feed rate, and depth of cut were designed and the experiment was conducted using the central composite planning method. The regression expressions of cutting temperature and surface roughness were respectively obtained as quadratic functions to obtain the minimum value and optimal cutting conditions. The values from this formula and the experimental values were compared. As a result, this study makes and establishes the basis to prevent environmental pollution caused by the use of coolant and to replace it with ADL (Aerosol Dry Lubricant) machining that uses a very small amount of vegetable oil with high pressure.

Fracture resistance of ceramic brackets to arch wire torsional force (토오크 양에 따른 세라믹 브라켓의 파절 저항성)

  • Han, Jung-Heum;Chang, Minn-Hii;Lim, Yong-Kyu;Lee, Dong-Yul
    • The korean journal of orthodontics
    • /
    • v.37 no.4
    • /
    • pp.293-304
    • /
    • 2007
  • The purpose of this study was to estimate the fracture resistance of commercially available ceramic brackets to torsional force exerted from arch wires and to evaluate the characteristics of bracket fracture. Methods: Lingual root torque was applied to maxillary central incisor brackets with 0.022-inch slots by means of a $022\;{\times}\;028-inch$ stainless steel arch wire. A custom designed apparatus that attached to an Instron was used to test seven types of ceramic brackets (n = 15). The torque value and torque angle at fracture were measured. In order to evaluate the characteristics of failure, fracture sites and the failure patterns of brackets were examined with a Scanning Electron Microscope. Results: Crystal structure and manufacturing process of ceramic brackets had a significant effect on fracture resistance. Monocrystalline alumina (Inspire) brackets showed significantly greater resistance to torsional force than polycrystalline alumina brackets except InVu. There was no significant difference in fracture resistance during arch wire torsional force between ceramic brackets with metal slots and those without metal slots (p > 0.05). All Clarity brackets partially fractured only at the incisal slot base and the others broke at various locations. Conclusion: The fracture resistance of all the ceramic brackets during arch wire torsion appears to be adequate for clinical use.