• Title/Summary/Keyword: central hole

Search Result 160, Processing Time 0.026 seconds

Study on Solid-liquid Mixture Flow in Inclined Annulus (경사 환형관내 고-액 혼합 유동특성에 관한 연구)

  • Kim, Young-Ju;Kim, Young-Hun;Woo, Nam-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.15-20
    • /
    • 2011
  • This study carried out a series of experiments involving impact tests (Drop Weight type & Charpy type with a standard specimen and newly designed I-type specimen), hardness tests, and fracture surface observations of French-made roll shell steel (F), abnormal roll shell steel (M), reheated roll shell steel (R), and S25C steel under heat treatment conditiAn experimental study was carried out to study the solid-liquid mixture upward hydraulic transport of solid particles in vertical and inclined annuli with a rotating inner cylinder. The lift forces acting on a fluidized particle play a central role in many important applications such as the removal of drill cuttings in horizontal drill holes, sand transport in fractured reservoirs, sediment transport, the cleaning of particles from surfaces, etc. In this study a clear acrylic pipe was used to observe the movement of solid particles. Annular velocities varied from 0.4 to 1.2 m/s. The effect of the annulus inclination and drill pipe rotation on the carrying capacity of a drilling fluid, particle rising velocity, and pressure drop in a slim hole annulus were measured for fully-developed flows of water and aqueous solutions of CMC (sodium carboxymethyl cellulose) and bentonite. The rotation of the inner cylinder was efficient at carrying particles to some degree. For a higher particle volume concentration, the hydraulic pressure loss of the mixture flow increased because of the friction between the wall and solids or between solids.

DEVELOPMENT OF AN IMPROVED FARE TOOL WITH APPLICATION TO WOLSONG NUCLEAR POWER PLANT

  • Lee, Sun Ki;Hong, Sung Yull
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.257-264
    • /
    • 2013
  • In Canada Deuterium Uranium (CANDU)-type nuclear power plants, the reactor is composed of 380 fuel channels and refueling is performed on one or two channels per day. At the time of refueling, the fluid force of the cooling water inside the channel is exploited. New fuel added upstream of the fuel channel is moved downstream by the fluid force of the cooling water, and the used fuel is pushed out. Through this process, refueling is completed. Among the 380 fuel channels, outer rows 1 and 2 (called the FARE channel) make the process of using only the internal fluid force impossible because of the low flow rate of the channel cooling water. Therefore, a Flow Assist Ram Extension (FARE) tool, a refueling aid, is used to refuel these channels in order to compensate for the insufficient fluid force. The FARE tool causes flow resistance, thus allowing the fuel to be moved down with the flow of cooling water. Although the existing FARE tool can perform refueling in Korean plants, the coolant flow rate is reduced to below 80% of the normal flow for some time during refueling. A Flow rate below 80% of the normal flow cause low flow rate alarm signal in the plant operation. A flow rate below 80% of the normal flow may cause difficulties in the plant operation because of the increase in the coolant temperature of the channel. A new and improved FARE tool is needed to address the limitations of the existing FARE tool. In this study, we identified the cause of the low flow phenomena of the existing FARE tool. A new and improved FARE tool has been designed and manufactured. The improved FARE tool has been tested many times using laboratory test apparatus and was redesigned until satisfactory results were obtained. In order to confirm the performance of the improved FARE tool in a real plant, the final design FARE tool was tested at Wolsong Nuclear Power Plant Unit 2. The test was carried out successfully and the low flow rate alarm signal was eliminated during refueling. Several additional improved FARE tools have been manufactured. These improved FARE tools are currently being used for Korean CANDU plant refueling.

An Experimental Study of Perfobond FRP-Concrete Composite Beam (퍼포본드 FRP-콘크리트 합성보의 실험적 연구)

  • Yoo, Seung-Woon;Kook, Moo-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.121-127
    • /
    • 2010
  • An experimental study of composite beam with perforated fiber reinforced polymer(FRP) plank as a permanent formwork and the tensile reinforcement was performed. A combined formwork and reinforcement system can facilitate rapid construction of concrete members since no conventional formwork is needed, which requires time consuming assembly and dismantling. In order for a smooth FRP plank to act compositely with the concrete, the surface of the FRP needs to be treated to increase its bond properties. Aggregates were bonded to the FRP plank using a commercially available epoxy and perforated web of plank. No additional flexural or shear reinforcement was provided in the beams. For comparison, two control specimens were tested. One control had no perforated hole in the web of FRP plank and the other had internal steel reinforcing bars instead of the FRP plank. The beams were loaded by central patch load to their ultimate capacity. This study demonstrates that the perforated FRP plank has the potential to serve as a permanent formwork and reinforcing for concrete beam.

Comparative Study on Various Ductile Fracture Models for Marine Structural Steel EH36

  • Park, Sung-Ju;Lee, Kangsu;Cerik, Burak Can;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.259-271
    • /
    • 2019
  • It is important to obtain reasonable predictions of the extent of the damage during maritime accidents such as ship collisions and groundings. Many fracture models based on different mechanical backgrounds have been proposed and can be used to estimate the extent of damage involving ductile fracture. The goal of this study was to compare the damage extents provided by some selected fracture models. Instead of performing a new series of material constant calibration tests, the fracture test results for the ship building steel EH36 obtained by Park et al. (2019) were used which included specimens with different geometries such as central hole, pure shear, and notched tensile specimens. The test results were compared with seven ductile fracture surfaces: Johnson-Cook, Cockcroft-Latham-Oh, Bai-Wierzbicki, Modified Mohr-Coulomb, Lou-Huh, Maximum shear stress, and Hosford-Coulomb. The linear damage accumulation law was applied to consider the effect of the loading path on each fracture surface. The Swift-Voce combined constitutive model was used to accurately define the flow stress in a large strain region. The reliability of these simulations was verified by the good agreement between the axial tension force elongation relations captured from the tests and simulations without fracture assignment. The material constants corresponding to each fracture surface were calibrated using an optimization technique with the minimized object function of the residual sum of errors between the simulated and predicted stress triaxiality and load angle parameter values to fracture initiation. The reliabilities of the calibrated material constants of B-W, MMC, L-H, and HC were the best, whereas there was a high residual sum of errors in the case of the MMS, C-L-O, and J-C models. The most accurate fracture predictions for the fracture specimens were made by the B-W, MMC, L-H, and HC models.

Experimental and numerical studies of concrete bridge decks using ultra high-performance concrete and reinforced concrete

  • Shemirani, Alireza Bagher
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.407-418
    • /
    • 2022
  • This paper numerically investigates the effect of changes in the mechanical properties (displacement, strain, and stress) of the ultra-high-performance concrete (UHPC) without rebar and the reinforced concrete (RC) using steel re-bars. This reinforced concrete is mostly used in the concrete bridge decks. A mixture of sand, gravel, cement, water, steel fiber, superplasticizer, and micro silica was used to fabricate UHPC specimens. The extended finite element method as used in the ABAQUS software is applied for considering the mechanical properties of UHPC, RC, and ordinary concrete specimens. To calibrate the ABAQUS, some experimental tests have been carried out in the laboratory to measure the direct tensile strength of UHPC by the compressive-to-tensile load converting (CTLC) device. This device contains a concrete specimen and is mounted on a universal tensile testing apparatus. In the experiments, three types of mixed concrete were used for UHPC specimens. The tensile strength of these specimens ranges from 9.24 to 11.4 MPa, which is relatively high compared with ordinary concrete specimens, which have a tensile strength ranging from 2 to 5 MPa. In the experimental tests, the UHPC specimen of size 150×60×190 mm with a central hole of 75 mm (in diameter)×60 mm (in thickness) was specially made in the laboratory, and its direct tensile strength was measured by the CTLC device. However, the numerical simulation results for the tensile strength and failure mechanism of the UHPC were very close to those measured experimentally. From comparing the numerical and experimental results obtained in this study, it has been concluded that UHPC can be effectively used for bridge decks.

Response of two-way reinforced concrete voided slabs enhanced by steel fibers and GFRP sheets under monotonic loading

  • Adel A. Al-Azzawi;Shahad H. Mtashar
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.1
    • /
    • pp.1-23
    • /
    • 2023
  • Various efforts have been made to reduce the weight of concrete slabs while preserving their flexural strength. This will result in reducing deflection and allows the utilization of longer spans. The top zone of the slab requires concrete to create the compression block for flexural strength, and the tension zone needs concrete to join with reinforcing for flexural strength. Also, the top and bottom slab faces must be linked to transmit stresses. Voided slab systems were and are still used to make long-span slab buildings lighter. Eight slab specimens of (1000*1000 (1000*1000 mm2) were cast and tested as two-way simply supported slabs in this research. The tested specimens consist of one solid slab and seven voided slabs with the following variables (type of slab solid and voided), thickness of slab (100 and 125 mm), presence of steel fibers (0% and 1%), and the number of GFRP layers). The voids in slabs were made using high-density polystyrene of dimensions (200*200*50 mm) with a central hole of dimensions (50*50*50 mm) at the ineffective concrete zones to give a reduction in weight by (34% to 38%). The slabs were tested as simply supported slabs under partial uniform loading. The results of specimens subjected to monotonic loading show that the combined strengthening by steel fibers and GFRP sheets of the concrete specimen (V-125-2GF-1%) shows the least deflection, deflection (4.6 mm), good ultimate loading capacity (192 MPa), large stiffness at cracking and at ultimate (57 and 41.74) respectively, more ductility (1.44), and high energy absorption (1344.83 kN.mm); so it's the best specimen that can be used as a voided slab under this type of loading.

Growth, Development, and Reproduction of Monochamus saltuarius (Coleoptera: Cerambycidae) on Conifers Fed to Larvae (북방수염하늘소 유충의 이목 침엽수 종류에 따른 성장과 발육 및 생식)

  • Hwang, In-Cheon;Kim, Ju-Huyn;Park, Jong-Bin;Shin, Sang-Chul;Chung, Young-Jin;Cho, Sae-Youll;Park, Yong-Chul
    • Korean journal of applied entomology
    • /
    • v.47 no.4
    • /
    • pp.385-394
    • /
    • 2008
  • Larvae of Monochamus saltuarius showed normal growth and development on conifers of Pinus koraiensis, P. densiflora, Abies holophylla, Larix leptolepsis, P. bungeana, and P. rigida, respectively, but the conifers influenced significantly the body weight and the survival rate of larvae. Though the larval body weights were in a wide spectrum among treatments, growth curves of them were very similar from each other, showing continuous increase from the early larval stage to about 3 months old. The body weight was decreased slightly after the feeding period of the early 3 months. The size of larvae and adults became the largest from P. bungeana fed larvae. The mid-sized ones were from P. koraiensis, P. densiflora and A. holophylla. Small ones came from L. leptolepsis and P. rigida. The larval growth was retarded without water supply. Overall survival rates from the early stage of a larva to a fertile adult were 53.6% from P. koraiensis; 51.8%, P. densiflora; 34.7%, A. holophylla; 17.8%, P. bungeana; 16.7%, L. leptolepsis; and 12.3%, P. rigida. Adults from larvae fed the 6 species of conifers, respectively, were grown into the reproductively potent adults, which laid viable eggs. A few of overwintered larvae did not pupate and remained still as a larva until the late October of the year. Data from the field survey, the head width emerged from P. koraiensis was larger than that of L. leptolepsis. The adult emergence hole in P. koraiensis was larger also. While, the size of the emergence hole was larger in the artificially innoculated log of P. koraiensis, which was kept for a larva to be with a minimized food competition and sufficient water supply, than that of the field.

Effects of Geological Conditions on the Geomorphological Development of the Southwestern Coastal Regions of Korea (서남해안지역(西南海岸地域)의 지형발달(地形發達)에 미친 지질조건(地質條件))

  • Kim, Suh Woon
    • Economic and Environmental Geology
    • /
    • v.4 no.1
    • /
    • pp.11-18
    • /
    • 1971
  • The geotectonics and geomorphic structure of Korea resulted from the Song-rim Disturbance and the Daebo orogenic movements. Afterward this mountainous peninsula underwent several geological changes on a small scale, and it was also claimed that the steady rising of the elevated peneplain of the eastern coast and the submerging of the southwestern coastal area are largely due to the tilted block movement. These views have been generally accepted good in several ways, but they are limited in range or lacking in theoretical integration. The present writer investigated the geology of the Mt. Chi-ri-san and the Honam coal mining area for a geological map in 1965, respectively. The results of these studies convinced the present writer that the conventional views, which were based upon a theory of lateral pressure should be reconsidered in many respects, and more recent studies made it clear that the morphological development in the southwestern area can be better explained by the orogenic movement and rock control. The measurement of submerging speed of the western coastal area (Pak. Y. A., 1969) and a new account on the geology and tectonics of the Mid-central region of South Korea (Kim O.J., 1970) act as an encouragement to a new explanation. The present writer's researches on the extreme southwestern portion of the peninsula show that the steady submerging of this area cannot be attributed to a simple downthrown block phenomenon caused by block movement. It is no more than the result of the differential movement of uplifting in the eastern and western coastal areas and the rising of sea-level in the post-glacial period. This phenomenon could be easily explained by the comparison of the rate of rise in sea-level and amount of heat flow between Korea and other areas in the world. The existance of the erosional planes in the Sobaik-San ranges also provide an evidence of an upheaval in the western coast area. Though the Sobaik-San ranges largely follow the direction of the Sinian system. They consist of the numerous branches, whose trends run more or less differently from their main trend because of the disharmonic folding, are converged into Mt. Sobaik-San and Chupungryung. The undulation of the land is not wholely caused by orogenic movements, where as the present writer confirmed that the diversity of morphological development is the direct reflection of geological conditions such as rocks and processes which constitute the basic elements of geomorphic structure. An east-west directed mountain range which could be named as Hansan mountain range, was claimed to be oriented by the joint control. The geological conditions such as a special erosion and weathering of agglomerate and breccia tuff usually produce pot-hole like submarine features which cause the whirling phenomenon at the southwestern coast channel.

  • PDF

The Results of Drilling in Weondong Mine Area, the Taebaegsan Mineralized District, Republic of Korea (강원도 태백산지역 원동광산 시추탐사연구)

  • Lee, Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.44 no.4
    • /
    • pp.313-320
    • /
    • 2011
  • The Taebaegsan Mineralized District is the most prospective region for the useful mineral commodities such as a coal, non-metallic, metallic mineral in South Korea. From a general point of view, Cambro- Ordovician limestone formations, Myobong slate and Pungchon (Daegi) limestone, are the most fertilizable formations in the Taebaegsan Mineralized District. The geology around Weondong mine area consists mainly of Carboniferous-Triassic formations and Cambro-Ordovician formations intruded by rhyolite/quartz porphyry. The great overthrusted fault of N40~$50^{\circ}E$ direction, so called Weondong overthrust fault, is observed in the central part of the mine area and the NS fault system cuts the overthrusted fault. By postulating from the favorable geological and structural condition around Weondong area, the possibility of deep seated hidden ore bodies is expected. In 2010, on the basis of the results of LOTEM and CSAMT survey, the cross-hole survey was performed for the investigation of the hidden polymetallic ore body in the deep parts of the Weondong mine area and the grade of the newly-discovered orebody is as follows; (1) The cut-off grade for lead-zinc 3%; an weighted average grade 5.50% (2.7 m), (2) The cutoff grade for copper 0.1%; an weighted average grade 0.91% (14.65 m), (3) The cut-off grade for iron 30%; an weighted average grade 38.18% (3.3 m), (4) $WO_3$ for each cut-off grade(0.01%, 0.05%, 0.1%); an weighted average grade 0.29 wt. % (8.8 m), 1.15 wt. % (2.1 m), 1.97 wt. % (1.2 m), (5) $MoS_2$ for each cut-off grade(0.01%, 0.1%); an weighted average grade 0.15 wt. % (6.3S m), 0.28 wt. % (3.15 m), (6) $Ta_2O_5$ for each cut-off grade (0.01%, 0.1%); an weighted average grade 0.13% (19.S m), 1.11% (1.8 m), (7) $Nb_2O_5$ for each cut-offgrade (0.01%, 0.1%); an weighted average grade 0.06% 11.5 m), 0.15% (3.0 m).

SF Movie Star Trek Series and the Motif of Time Travel (SF영화 <스타트랙> 시리즈와 시간여행의 모티프)

  • Noh, Shi-Hun
    • Journal of Popular Narrative
    • /
    • v.25 no.1
    • /
    • pp.165-191
    • /
    • 2019
  • The purpose of this article is to elucidate why the motif of time travel is repeated in the science fiction narrative by examining the functions of this motif in the SF movie series of Star Trek in its narrative and non-narrative aspects. Star Trek IV: The Voyage Home (1986) aims to attract the audience's interest in the story through the use of plausible time travel in the form of the slingshot effect which causes the spacecraft to fly at very fast speeds around an astronomical object. The movie also touches upon the predestination paradox that arises from a change of history in which it describes a formula of transparent aluminum that did not exist at the time. The film also serves as an evocation of the ideology of ecology by including humpback whales in the central narrative and responding to the real issue of the whale protection movement of the times. Star Track VIII: First Contact (1996) intends to interest the audience in the narrative with the warp drive, a virtual device that enables travel at speeds faster than that of light and a signature visual of Star Trek, at the time of its birth through time travel. The film emphasizes the continuation of peaceful efforts by warning the destruction of humanity that nuclear war can bring. It tackles with the view of pacifism and idealism by stressing the importance of cooperation between countries in the real world by making the audience anticipate the creation of the United Federation of Planets through encounters with the extraterrestrial. Star Trek: The Beginning (2009) improves interest through the idea of time travel to the past, this time using a black hole and the parallel universe created thereby. The parallel universe functions as a reboot, allowing a new story to be created on an alternate timeline while maintaining the original storyline. In addition, this film repeats the themes pacifism and idealism shown in the 1996 film through the confrontation between Spock (and the Starfleet) and Nero, the destruction of the Vulcan and the Romulus, and the cooperation of humans and Vulcans. Eventually, time travel in three Star Trek films has the function of maximizing the audience's interest in the story and allowing it to develop freely as a narrative tool. It also functions as an ideal solution for commenting on current problems in the non-narrative aspect. The significance of this paper is to stress the possibility that the motif of time travel in SF narrative will evolve as it continues to repeat in different forms as mentioned above.