• Title/Summary/Keyword: central heating

Search Result 205, Processing Time 0.029 seconds

A Simulation Study on Effect Analysis of EMS Combined Control of Central Cooling and Heating System (중앙냉난방시스템의 EMS 복합제어 효과 분석에 관한 시뮬레이션 연구)

  • Jae-Yeob Song;Byung-Cheon Ahn
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.4
    • /
    • pp.33-44
    • /
    • 2022
  • In this study, we analyze the existing heating and cooling operation method for an office-type complex building with a central heating and cooling system, and examine the effects of applying various EMS that can be applied according to the load size to save energy in the building. For this purpose, simulation analysis was performed. As a control method, reset control of chilled water, hot water, cooling water and supply air temperatures, optimal start/stop of heat source, and number of heat source control were applied according to the load size, and energy consumption was analyzed accordingly. In addition, when all of these control methods were applied, the overlapping energy saving effect was finally confirmed. As a result, it was possible to confirm the energy saving effect when EMS for reset control and heat source control were applied compared to the existing control method of the heating and cooling system, and the effect for the case of using all these control methods in combination was also confirmed.

A Study on the Characteristics of Management Costs of Apartment Complexes by the Types of Heating Systems (난방방식에 따른 아파트 관리비용의 실태에 관한 연구 - 대전광역시를 대상으로 -)

  • Koh, Bong-Sung;Kim, Sang-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.3
    • /
    • pp.607-615
    • /
    • 2012
  • The aim of the study is to estimate the management costs of apartments by the types of heating systems(individual, central, district heating system). Multiple regression analysis was adapted and the used data are derived from 128 apartment complexes in Daegeon-si. The results are as follows; first, the management cost is decreased as a size of apartment is larger, second, the costs of general maintenance, security and repairing of buildings are lower in individual heating system. however, there is no significant differences in cleaning costs by the types of heating systems.

A Study on the Estimation model of the Amount of the Electric Energy Consumption according to the Apartment Heating Type (공동주택 난방방식별 전력에너지 소비량 추정모델 작성 연구)

  • Lee, Kang-Hee;Yang, Jae-Hyuk;Ryu, U-Sang
    • KIEAE Journal
    • /
    • v.10 no.1
    • /
    • pp.57-64
    • /
    • 2010
  • Electric energy is indispensible of the development of the industrial and living sector. Among the energy sectors, the building area shares 20% of the produced electric power in Korea. As we plan to supply the apartment, we need to forecast the required amount of the electric energy and supply the infrastructure to apartment for the lighting, cooling. Nonetheless, it is not easy to forecast the required amount of the electric energy, considering the management aspect, building physical aspect and social-geographic aspect. In this paper, it studied the estimation model of the electric energy, reflecting the affecting variables such as total area, number of household, geography and so on. The estimation model is proposed in 3-types which explained in central heating, individual heating and district heating, and each type have two estimation model, reflecting the affecting variable and corelation between variables to eliminate the muticolinearity. The unit of electric energy consumption per area and year is similar in three heating type and the results are as follows; the central heating is $34.446kWh/yr{\cdot}m^2$, individual type is $35.756446kWh/yr{\cdot}m^2$ and district heating is $34.285446kWh/yr{\cdot}m^2$.

The Effects of Prediction and Reset Control of Outdoor Air Temperature on Energy Consumption for Central Heating System (외기온도 예측 및 보상제어가 난방시스템의 에너지 소비량에 미치는 영향)

  • Ahn, Byung-Cheon;Hong, Sung-Suk
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.4
    • /
    • pp.8-14
    • /
    • 2016
  • In this study, the effects of prediction and reset control of outdoor air temperature on energy consumption for central heating system are researched by using TRNSYS program package, and the control performances with the suggested methods of prediction and reset control of outdoor air temperature are compared with the existing ones. As a result, the value of coefficient of determination $R^2$ for the predicted outdoor temperatures is improved and the suggested control method shows maximum 21.8% energy saving in comparison with existing control ones.

Real Time Near Optimal Control Application Strategy for Heat Source and HVAC System (열원 및 공조설비 통합 최적제어기법 구현에 관한 연구)

  • Song, Jae-Yeob;Ahn, Byung-Cheon;Joo, Yong-Duk;Kim, Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.60-65
    • /
    • 2008
  • The near-optimal control algorithm for central cooling and heating system has been developed for minimizing energy consumption while maintaining the comfort of indoor thermal environment in terms of the environmental variables such as time varying indoor load and outdoor temperatures. The optimal set-points of control parameters with near-optimal control are supply air and chilled or hot water temperatures. The near optimal control algorithm has been implemented by using LabVIEW program in order to analyze energy performance for central cooling and heating control system.

  • PDF

Analysis of Annual Operation Status of Central Heating and Cooling System in a Public Office Building (공공건물 중앙식 냉난방시스템의 연간 운영 사례 분석)

  • Ra, Seon-Jung;Aum, Tae-Yun;Son, Jin-Woong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.2
    • /
    • pp.175-180
    • /
    • 2020
  • The purpose of this study was to clarify precautions during the design and operation phases for energy reduction in a public office building. To check the operation status of the building, we measured the indoor temperature and humidity in the office space of the building installed central heating and cooling systems. And we analyzed these data and annual BEMS data. As a result, we found six problems related to decreasing system efficiency. Based on these, we presented the information to improve the efficiency of the system from the design and operation phase. Also, we present the need for a system to support the decision-making of operational managers in real-time for the energy efficiency of the building.

A Study on the Application of the Solar Energy Seasonal Storage System Using Sea water Heat Source in the Buildings (해수냉열원을 이용한 태양열계간축열시스템의 건물냉방 적용에 관한 연구)

  • Kim, Myung-Rae;Yoon, Jae-Ock
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.56-61
    • /
    • 2009
  • Paradigm depending only on fossil fuel for building heat source is rapidly changing. Accelerating the change, as it has been known, is obligation for reducing green house gas coming from use of fossil fuel, i.e. reaction to United Nations Framework Convention on Climate Change. In addition, factors such as high oil price, unstable supply, weapon of petroleum and oil peak, by replacing fossil fuel, contributes to advance of environmental friendly renewable energy which can be continuously reusable. Therefore, current new energy policies, beyond enhancing effectiveness of heat using equipments, are to make best efforts for national competitiveness. Our country supports 11 areas for new renewable energy including sun light, solar heat and wind power. Among those areas, ocean thermal energy specifies tidal power generation using tide of sea, wave and temperature differences, wave power generation and thermal power generation. But heat use of heat source from sea water itself has been excluded as non-utilized energy. In the future, sea water heat source which has not been used so far will be required to be specified as new renewable energy. This research is to survey local heating system in Europe using sea water, central solar heating plants, seasonal thermal energy store and to analyze large scale central solar heating plants in German. Seasonal thermal energy store necessarily need to be equipped with large scale thermal energy store. Currently operating central solar heating system is a effective method which significantly enhances sharing rate of solar heat in a way that stores excessive heat generating in summer and then replenish insufficient heat for winter. Construction cost for this system is primarily dependent on large scale seasonal heat store and this high priced heat store merely plays its role once per year. Since our country is faced with 3 directional sea, active research and development for using sea water heat as cooling and heating heat source is required for seashore villages and building units. This research suggests how to utilize new energy in a way that stores cooling heat of sea water into seasonal thermal energy store when temperature of sea water is its lowest temperature in February based on West Sea and then uses it as cooling heat source when cooling is necessary. Since this method utilizes seasonal thermal energy store from existing central solar heating plant for heating and cooling purpose respectively twice per year maximizing energy efficiency by achieving 2 seasonal thermal energy store, active research and development is necessarily required for the future.

  • PDF

Analysis for the Economic efficiency of District Heating and Gas Engine Co-generation System comparing with Central Heating System (중앙난방방식을 지역난방.소형열병합난방방식으로 전환시의 경제성 비교 분석)

  • Kim, Kyu-Saeng;Lee, Sang-Hyeok;Hong, Kyung-Pyo;Won, Young-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.459-465
    • /
    • 2007
  • This study was conducted to calculate the LCC of a apartment complex with a type of heating system, district heating and cogeneration system. For the purpose of analyzing LCC according to size of apartment complex, 500, 1,500 and 4,000 houses of model apartment selected. This research performs design of heating system and the life cycle cost analysis including an initial cost, energy cost, maintenance and operation cost, replacement cost and renovation cost during the project period(15years). According to the calculated results, 1) Initial cost of cogeneration system with 500, 1500 and 4000 houses is higher than district heating system each of 20%, 13%, 12%. 2) In case of cogeneration system, the payback period by electric generation is 5.21, 4.92 and 4.47 years and saving cost was calculated 29 billion won, 94 billion won and 262 billion won after payback period. 3) Cogeneration system LCC was 1.12, 1.07 and 1.06 times larger than district system with the size of apartment complex. According to the case of this study district heating system is more efficient than cogeneration system in terms of the reduction of LCC. 4) Gas Engine Co-generation System is more efficient than other systems because it can collect progressive part from electric charge progressive stage system. However, the efficiency is decreasing because of raising of fuel bills(LNG) and lowering of power rate for house use. Especially the engine is foreign-made so the cost of maintenance and repair is high and the technical expert is short. 5) District heating is also affected by fuel bills so we should improve energy efficiency through recovering of waste heat(incineration heat, etc.). Also, we should supply district cooling on the pattern of heat using of let the temperature high in winter and low in summer.

  • PDF

COCOA: The CO-evolution of cluster COres and the AGNs of central galaxies

  • Baek, Junhyun;Jung, Taehyun;Tremou, Evangelia;Sohn, Bong-Won;Chung, Aeree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.49.2-49.2
    • /
    • 2013
  • We report preliminary results from a radio study of central galaxies in cool and non-cool core clusters. A cooling flow is expected to rapidly form in the center of galaxy clusters unless additional heating mechanisms such as merging with sub clusters are at work. It has been suggested that cool flows can feed the AGN in the central galaxies, increasing their power. On the other hand, the AGN feedback can also affect the surrounding medium, heating back up the gas in the cluster core region. In this study, we investigate the co-evolution of cool flows and the AGN of galaxies located in the cluster center. For this study, we have selected 13 radio bright central galaxies from clusters with a range of cooling time scale. In this work, we present results of our recent observations using the Korean VLBI Network. We discuss the properties of the sample in radio and other wavelengths.

  • PDF

Analysis of the Economic Efficiency of the District Heating and Gas Engine Co-Generation System Compared with the Central Heating System (중앙난방방식을 지역난방과 소형열병합난방 방식으로 전환 시 경제성 비교 분석)

  • Kim, Kyu Saeng
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.10
    • /
    • pp.544-551
    • /
    • 2015
  • This study was conducted to determine the LCC of apartment complexes with district heating and a cogeneration system. For the purpose of analyzing LCC according to the size of the apartment complex, 500, 1,500, and 4,000-unit model apartments were selected. Analysis was performed on the design of the heating system and the life cycle cost including total construction cost, maintenance and operation cost for the duration of the project period (15 years). According to the calculated results, 1) The initial cost of the cogeneration system for 500, 1,500, and 4,000-unit apartments is higher than that of the district heating system by 20%, 13%, and 12%, respectively. 2) In the case of the cogeneration system, the payback period by electric generation was found to be 5.21, 4.92 and 4.47 years, and saving cost was calculated to be 29 billion won, 94 billion won and 262 billion won after the payback period for 500, 1,500, and 4,000-unit apartments, respectively. 3) The LCC values of the cogeneration system were 1.12, 1.07 and 1.06 times larger than those of the district system according to the size of the apartment complex. In this study, the district heating system was found to be more efficient than the cogeneration system in terms of LCC reduction. 4) District heating is affected by fuel bills, so energy efficiency should be improved through recovering waste heat (incineration heat, etc.). Also, district cooling should be provided according to heat use to keep the temperature high in winter and low in summer.