• Title/Summary/Keyword: cemented implant-supported prostheses

Search Result 11, Processing Time 0.025 seconds

Effect of cement washout on loosening of abutment screws and vice versa in screw- and cement- retained implant-supported dental prosthesis

  • Kim, Seok-Gyu;Chung, Chae-Heon;Son, Mee-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.3
    • /
    • pp.207-213
    • /
    • 2015
  • PURPOSE. The purpose of this study was to examine the abutment screw stability of screw- and cement-retained implant-supported dental prosthesis (SCP) after simulated cement washout as well as the stability of SCP cements after complete loosening of abutment screws. MATERIALS AND METHODS. Thirty-six titanium CAD/CAM-made implant prostheses were fabricated on two implants placed in the resin models. Each prosthesis is a two-unit SCP: one screw-retained and the other cemented. After evaluating the passive fit of each prosthesis, all implant prostheses were randomly divided into 3 groups: screwed and cemented SCP (Control), screwed and non-cemented SCP (Group 1), unscrewed and cemented SCP (Group 2). Each prosthesis in Control and Group 1 was screwed and/or cemented, and the preloading reverse torque value (RTV) was evaluated. SCP in Group 2 was screwed and cemented, and then unscrewed (RTV=0) after the cement was set. After cyclic loading was applied, the postloading RTV was measured. RTV loss and decementation ratios were calculated for statistical analysis. RESULTS. There was no significant difference in RTV loss ratio between Control and Group 1 (P=.16). No decemented prosthesis was found among Control and Group 2. CONCLUSION. Within the limits of this in vitro study, the stabilities of SCP abutment screws and cement were not significantly changed after simulated cement washout or screw loosening.

EFFECTS OF VARIOUS CEMENTS AND THERMOCYCLING ON RETENTIVE STRENGTHS OF CEMENTED IMPLANT-SUPPORTED PROSTHESES (시멘트 유지형 임플란트 보철물의 유지력에 시멘트의 종류와 열순환이 미치는 영향에 관한 연구)

  • Cho Jae-Ho;Jeong Chang-Mo;Jeon Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.466-475
    • /
    • 2003
  • Statement of problem : In cemented implant-supported porstheses, it is still controversy what kind of cement to use. However, the effect of thermocycling on retentive strength of cemented implant-supported prostheses has not been well investigated. Purpose : This study was tested to evaluate the effects of various cements and thermocycling on retentive strengths of cemented implant-supported prostheses. Material and methods : Prefabricated implant abutments, height 5mm, diameter 6mm, 3-degree taper per side, with light chamfer margins were used. Ten specimens of two-unit fred partial denture were fabricated. The luting agents used for this study were three provisional luting agents which were Temp bond, Temp bond NE, IRM and four permanent luting agents which were Panavia F, Fuji-cem, Hy-bond Zinc cement, Hy-bond Polycarboxylate cement. 24 hours after cementation. the retentive strengths were measured by the universal testing machine with a cross-head speed of 0.5mm/min. Then cementation procedures were repeated and specimens were thermocycled 1000 times at temperature of $5^{\circ}C$ and $55^{\circ}C$. After thermocycling, the retentive strengths were measured. Results : Before thermocycling, the retentive strengths were decreased with the sequence of Panavia F. Fuji-cem. Hy-bond Zinc cement. Hy-bond Polycarboxylate cement, IRM, Temp bond NE and Temp bond, and there were significant differences among each groups(p<0.05). After thermocycling, the retentive strengths were decreased with the sequence of Panavia F. Fuji-cem, Hybond Zinc cement, Hy-bond Polycarboxylate cement, IRM, Temp bond NE and Temp bond, and there were no significant differences among Panavia F, Fuji-cem and Temp bond NE, Temp bond(p>0.05). The retentive strengths before and after thermocycling showed significant differences in Hy-bond Zinc cement. IRM, Temp bond NE and Temp bond(p<0.05). Conclusion : Within the limitation of this study, thermocycling do not affect the retentive strengths of permanent luting agents but the retentive strengths of temporary cements were reduced significantly after thermocyling.

Effect of different abutment height and convergence taper on the retention of crowns cemented onto implant-supported prostheses (시멘트 유지형 임플란트 지대주의 높이와 축면경사도가 보철물의 유지력에 미치는 영향)

  • Byun, Tae-Hee;Kim, Bu-Sob;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.30 no.1
    • /
    • pp.57-63
    • /
    • 2008
  • The purpose of this study was to ascertain the effect of different abutment height and different taper of abutment on retention force of cemented implant-supported prostheses. Test specimens consisted of different abutment height group(3mm, 4mm, 5mm, 6mm, 7mm) and different taper(degrees) abutment group($4^{\circ},\;5^{\circ},\;6^{\circ},\;7^{\circ},\;8^{\circ}$). The surfaces of abutments and crowns were manufactured and finished by automatic lathe(CNC). Luting cement(Tokuso Ionomer) was prepared according to the manufacturer's instruction. And the cylinders were sealed onto the abutments and loaded in compression at 5kg for 10minutes. Excess cement was removed from the abutment-cylinder junction and the specimens were stored at room temparature for 24 hours. Specimens were tested in tension using a universal testing machine. Within the limits of this study, the following conclusions were drawn: 1. The increase in abutment height result in improvement in retention strength(P<0.05). 2. The increase in taper of abutment result in decrease in retention strength(P<0.05). 3. The decrease in abutment height result in decrease in retention strength, besides has a significantly lower retention strength at 3mm abutment height. 4. The increase in taper of abutment result in decrease in retention strength, besides has a significantly lower retention strength at $7^{\circ}$ abutment.

  • PDF

The selection criteria of temporary or permanent luting agents in implant-supported prostheses: in vitro study

  • Alvarez-Arenal, Angel;Gonzalez-Gonzalez, Ignacio;deLlanos-Lanchares, Hector;Brizuela-Velasco, Aritza;Ellacuria-Echebarria, Joseba
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.2
    • /
    • pp.144-149
    • /
    • 2016
  • PURPOSE. The use of temporary or permanent cements in fixed implant-supported prostheses is under discussion. The objective was to compare the retentiveness of one temporary and two permanent cements after cyclic compressive loading. MATERIALS AND METHODS. The working model was five solid abutments screwed to five implant analogs. Thirty Cr-Ni alloy copings were randomized and cemented to the abutments with one temporary (resin urethane-based) or two permanent (resin-modified glass ionomer, resin-composite) cements. The retention strength was measured twice: once after the copings were cemented and again after a compressive cyclic loading of 100 N at 0.72 Hz (100,000 cycles). RESULTS. Before loading, the retention strength of resin composite was 75% higher than the resin-modified glass ionomer and 2.5 times higher than resin urethane-based cement. After loading, the retentiveness of the three cements decreased in a non-uniform manner. The greatest percentage of retention loss was shown by the temporary cement and the lowest by the permanent resin composite. However, the two permanent cements consistently show high retention values. CONCLUSION. The higher the initial retention of each cement, the lower the percentage of retention loss after compressive cyclic loading. After loading, the resin urethane-based cement was the most favourable cement for retrieving the crowns and resin composite was the most favourable cement to keep them in place.

COMPARATIVE STUDY ON THE FRACTURE STRENGTH OF METAL-CERAMIC VERSUS COMPOSITE RESIN-VENEERED METAL CROWNS IN CEMENT-RETAINED IMPLANT-SUPPORTED CROWNS UNDER VERTICAL COMPRESSIVE LOAD

  • Pae, Ahran;Jeon, Kyung-A;Kim, Myung-Rae;Kim, Sung-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.3
    • /
    • pp.295-302
    • /
    • 2007
  • Statement of problem. Fracture of the tooth-colored superstructure material is one of the main prosthetic complications in implant-supported prostheses. Purpose. The purpose of this in vitro study was to compare the fracture strength between the cement-retained implant-supported metal-ceramic crowns and the indirect composite resinveneered metal crowns under the vertical compressive load. Material and methods. Standard implants of external type (AVANA IFR 415 Pre-mount; Osstem Co., Busan, Korea) were embedded in stainless steel blocks perpendicular to their long axis. Customized abutments were fabricated using plastic UCLA abutments (Esthetic plastic cylinder; Osstem Co., Busan, Korea). Thirty standardized copings were cast with non-precious metal (Rexillium III, Pentron, Walling ford, Conn., USA). Copings were divided into two groups of 15 specimens each (n = 15). For Group I specimens, metal-ceramic crowns were fabricated. For Group II specimens, composite resin-veneered (Sinfony, 3M-ESPE, St. Paul, MN, USA) metal crowns (Sinfony-veneered crowns) were fabricated according to manufacturer's instructions. All crowns were temporary cemented and vertically loaded with an Instron universal testing machine (Instron 3366, Instron Corp., Norwood, MA, USA). The maximum load value (N) at the moment of complete failure was recorded and all data were statistically analyzed by independent sample t-test at the significance level of 0.05. The modes of failure were also investigated with visual analysis. Results. The fracture strength of Sinfony-veneered crowns ($2292.7{\pm}576.0N$) was significantly greater than that of metal-ceramic crowns ($1150.6{\pm}268.2N$) (P < 0.05). With regard to the failure mode, Sinfony-veneered crowns exhibited adhesive failure, while metal-ceramic crowns tended to fracture in a manner that resulted in combined failure. Conclusion. Sinfony-veneered crowns demonstrated a significantly higher fracture strength than that of metal-ceramic crowns in cement-retained implant-supported prostheses.

COMPARISON OF RETENTIVE FORCES OF TEMPORARY CEMENTS AND ABUTMENT HEIGHT USED WITH IMPLANT-SUPPORTED PROSTHESES

  • Lee, Dong-Hee;Suh, Kyu-Won;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.280-289
    • /
    • 2008
  • STATEMENT OF THE PROBLEM: Recent data regarding the effects the cement type and abutment heights on the retentive force of a prosthetic crown are inconsistent and unable to suggest clinical guidelines. PURPOSE OF THE STUDY: This study evaluated the effects of different types of temporary cements and abutment heights on the retentive strength of cement-retained implant-supported prostheses. MATERIALS AND METHODS: Prefabricated implant abutments, 4 mm in diameter, $8^{\circ}$taper per side, and light chamfer margins, were used. The abutment heights of the implants were 4 mm, 5.5 mm and 7 mm. Seven specimens of a single crown similar to a first premolar were fabricated. Six commercially available temporary cements, TempBond, TempBond NE, Cavitec, Procem, Dycal, and IRM, were used in this study. Twenty-four hours after cementation, the retentive strengths were measured using a universal testing machine with a crosshead speed of 0.5 mm/min. The cementation procedures were repeated 3 times. The data was analyzed using two-way analysis of variance and a Tukey test (${\alpha}$=0.05). RESULTS: The tensile bond strength ranged from 1.76 kg to 19.98 kg. The lowest tensile strengths were similar in the TempBond and Cavitec agents. Dycal showed the highest tensile bond strength (P<0.01). More force was required to remove the crowns cemented to the long abutments (P<0.05). CONCLUSION: TempBond and Cavitec agents showed the lowest mean tensile bond strength. The Dycal agent showed more than double the tensile bond strength of the TempBond agent.

PHOTOELASTIC ANALYSIS OF STRESS INDUCED BY FIXED PROSTHESES WITH RIGID OF NONRIGID CONNECTION BETWEEN NATURAL TOOTH AND OSSEOINTEGRATED IMPLANT (골육착성 보철 치료시 임플랜트와 자연 지대치와의 연결 방법에 따른 관탄성 응력 분석)

  • Kim, Young-Il;Chung, Chae-Heon;Cho, Kyu-Zong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.2
    • /
    • pp.271-300
    • /
    • 1993
  • The purpose of this study was to analyze the stress distribution at supporting bone according to the types of connection modality between implant and tooth in the superstrcture. This investigation evaluated the stress patterns in a photoelastic model produced by three different types of dental implants such as Branemark, Steri-Oss, IMZ and resin tooth using the techniques of quasi three dimensional photoelasticity. The teeth-supported bridge had a first molar pontic supported by second premolar and second molar as a control group. The implant and toothsupported bridge had a first molar pontic supported by second premolar and implant posterior retainer as an experimental group. Prostheses were mechanically connected to an adjacent second premolar by the rigid of nonrigid connection, Nonrigid connection used an attachment placed between the tooth-supported and fixture-supported component. The female(keyway) of attachment was placed on the distal end of the retainer supported by the tooth ; the male(Key) of attachment connected to the osseointegrated bridge was engaged into the keyway. All prostheses were casted in the same nonprecious alloy and were cemented and screwed on their respective abutments and implants. 16㎏ of vertical loads on central fossae of second premolar, first molar pontic, implant of second molar were applied respectively and 6.5㎏ of inclined load on middle buccal surface of first molar pontic was applied. The results were as follows : 1. Under the vertical load on the central fossa of first mloar pontic, the stress developed at the apex of tooth of implat was more uniformly distributed in the case of nonrigid connection than in the case of rigid connection. 2. Under the vertical load on the central fossa of first molar pontic, the stress developed around the cervical area of tooth of implant was larger in the case of rigid connection than in the case of nonrigid connection because the bending moment was more occured in the case of rigid connection than in the case of nonrigid connection. 3. Stress was more restricted to the loaded side of nonrigid connection than to that of rigid connection 4. Under the inclined load. The set screw loosening of implant was more easily occured in the case of nonrigid connection than in the case of rigid connection due to torque moment. 5. In the case of Branemark implant, the stress concentration in second premolar was larger and the stress developed around the cervical area of implant was lower than any other cases under the vertical load, because Branemark implant with the flexible gold screw was showed in incline toward second premolar by a bending moment. 6. The stress developed around the apex of tooth or implant was more uniformly distributed in the case of Steri-Oss implant with stiff screw than in the case of Branemark implant under the vertical load. But, the stress developed around the cervical area of the Steri-Oss implant was larger than that of any other implants because bending moment was occured by vertical migration of second premolar. 7. The stress distribution in the case of IMZ implant was similar to the case of natural teeth under small vertical load. But, the residual stress around the implant was showed to occurdue to deformation of IMC and sinking of screw under larger vertical load.

  • PDF

Analysis of implant strain value exerted using different screw tightening protocols in screw-retained 3-unit prostheses (3본 나사 유지형 임플란트 보철물의 고정 방식에 따른 임플란트 고정체 치경부에 발생하는 변형율 비교분석)

  • Kim, Sang-Beom;Lee, Du-Hyeong;Lee, Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.4
    • /
    • pp.321-327
    • /
    • 2020
  • Purpose: The purpose of this study was to measure and compare the strain value exerted on the cervical area using different screw tightening protocols in implant-supported, screw-retained 3-unit prostheses. Materials and methods: Strain gauges were attached to four implants: two external and two internal. Thereafter, two study model were designed each type using acrylic resin. CAD-CAM was used to design hex and nonhex abutments for each group (EH, ENH, IH, and INH group) and Screw-cement-retained prostheses were also designed using a nonprecious base metal. Abutment was fixed with 10 Ncm torque, and the prosthesis was cemented. Screws were fixed with 30 Ncm torque using different three protocols. After 5 min, the strain gauge level was measured, and group analysis was performed (α=.05). Results: External group showed significantly lower strain values than internal group and the EH group showed significantly lower strain values than the ENH group (P<.05). There was no difference in strain value based on the types of screw tightening protocols in same group (P>.05). The IH group exhibited significantly higher strain values than the INH group and the IH group showed a significant difference in strain values based on the types of screw tightening protocols used (P<.05). Conclusion: There was no significant effect on the external type in the implant-supported, screw-retained prostheses. However, strain values were high in the internal type, and the types of screw tightening protocol significantly affected these implants.

THE EFFECT OF INTERNAL IMPLANT-ABUTMENT CONNECTION AND DIAMETER ON SCREW LOOSENING

  • Ha, Chun-Yeo;Kim, Chang-Whe;Lim, Young-Jun;Jang, Kyung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.3
    • /
    • pp.379-392
    • /
    • 2005
  • Statement of problem. One of the common problems of dental implant prosthesis is the loosening of the screw that connects each component, and this problem is more common in single implant-supported prostheses with external connection, and in molars. Purpose. The purposes of this study were: (1) to compare the initial abutment screw detorque values of the six different implant-abutment interface designs, (2) to compare the detorque values of the six different implant-abutment interface designs after cyclic loading, (3) to compare the detorque values of regular and wide diameter implants and (4) to compare the initial detorque values with the detorque values after cyclic loading. Material and methods. Six different implant-abutment connection systems were used. The cement retained abutment and titanium screw of each system were assembled and tightened to 32Ncm with digital torque gauge. After 10 minutes, initial detorque values were measured. The custom titanium crown were cemented temporarily and a cyclic sine curve load(20 to 320N, 14Hz) was applied. The detorque values were measured after cyclic loading of one million times by loading machine. One-way ANOVA test, scheffe’s test and Mann-Whitney U test were used. Results. The results were as follows : 1. The initial detorque values of six different implant-abutment connections were not significantly different(p>0.05). 2. The detorque values after one million dynamic cyclic loading were significantly different (p<0.05). 3. The SS-II regular and wide implant both recorded the higher detorque values than other groups after cyclic loading(p<0.05). 4. Of the wide implants, the initial detorque values of Avana Self Tapping Implant, MIS and Tapered Screw Vent, and the detorque values of MIS implant after cyclic loading were higher than their regular counterparts(p<0.05). 5. After cyclic loading, SS-II regular and wide implants showed higher detorque values than before(p<0.05).

THE EFFECT OF ABUTMENT HEIGHT ON SCREW LOOSENING IN SINGLE IMPLANT-SUPPORTED PROSTHESES AFTER DYNAMIC CYCLIC LOADING

  • Kim Nam-Gun;Kim Yung-Soo;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.6
    • /
    • pp.664-670
    • /
    • 2004
  • Statement of problem. One of the common problems of dental implant prosthesis is the loosening of the screw that connects each component, and this problem is more common in single implant-supported prostheses with external connection. Purpose. The purpose of this study was to examine the changes of detorque values of abutment screws with external connection in different abutment heights. Materials and methods. After cyclic loading on three different abutment heights, detorque values were measured. Abutments were retained with titanium abutment screws tightened to 30 Ncm (30.5 kgmm) with digital torque gauge as recommended by the manufacturer. Replacing abutments, implants and titanium abutment screws with new ones at every measurement, initial detorque values were measured six times. In measuring de torque values after cyclic loading, Avana Cemented Abutments of 4.0 mm collar, 7.0 mm height (Osstem Co., Ltd., Seoul, Korea) were used with three different lengths of 5.0, 8.0, 11.0 mm. Shorter abutments were made by milling of 11.0 mm abutment to have the same force-exercised area of 4.5 mm diameter. Sine curve force (20N-320N, 14Hz) was applied, and detorque values were measured after cyclic loading of 2 million times by loading machine. Detorque values of initial and after-loading were measured by digital torque gauge. One-way ANOVA was employed to see if there was any influence from different abutment heights. Results. The results were as follows: 1. The initial detorque value was 27.8$\pm$0.93 kgmm, and the ratio of the initial detorque value to the tightening torque was 0.91(27.8/30.5). 2. Measured detorque values after cyclic loading were declined as the height of the abutment increased, that was, 5.0 mm; 22.3$\pm$0.82 kgmm, 8.0 mm; 21.8$\pm$0.93 kgmm, and 11.0 mm; 21.3$\pm$0.94 kgmm. 3. One-way ANOVA showed no statistically significant differences among these (p>0.05). 4. Noticeable mobility at the implant-abutment interface was not observed in any case after cyclic loading at all.