• Title/Summary/Keyword: cement-based materials

Search Result 584, Processing Time 0.024 seconds

Simulation on the Alternation of Limestone for Portland Cement Raw Material by Steel By-products Containing CaO (CaO 함유 철강 부산물을 활용한 시멘트 원료 석회석 대체 시뮬레이션)

  • Jae-Won Choi;Byoung-Know You;Min-Cheol Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • In this study, to reduce CO2 emission in the cement manufacturing process, we evaluated the limestone that is used as a raw material for cement, substituted with steel slag by the various substituted levels. Based on the chemical composition of each raw materials including limestone, and blast furnace slow cooling slag, converter slag, and KR slag as an alternative raw material, we simulated the optimal cement raw mixture by the substitution levels of limestone. Test results indicated that the steel slags contain a certain level of CaO that can be used as alternative decarbonated raw materials, and it has enough to partially reduce the amount of limestonem. And we estimated the maximum usable levels of each raw material. In particular, it was confirmed that by using a mixture of these raw materials rather than using them one by one, the effect of reducing limestone was increased and CO2 emission from the cement manufacturing process could be reduced.

Intelligent prediction of engineered cementitious composites with limestone calcined clay cement (LC3-ECC) compressive strength based on novel machine learning techniques

  • Enming Li;Ning Zhang;Bin Xi;Vivian WY Tam;Jiajia Wang;Jian Zhou
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.577-594
    • /
    • 2023
  • Engineered cementitious composites with calcined clay limestone cement (LC3-ECC) as a kind of green, low-carbon and high toughness concrete, has recently received significant investigation. However, the complicated relationship between potential influential factors and LC3-ECC compressive strength makes the prediction of LC3-ECC compressive strength difficult. Regarding this, the machine learning-based prediction models for the compressive strength of LC3-ECC concrete is firstly proposed and developed. Models combine three novel meta-heuristic algorithms (golden jackal optimization algorithm, butterfly optimization algorithm and whale optimization algorithm) with support vector regression (SVR) to improve the accuracy of prediction. A new dataset about LC3-ECC compressive strength was integrated based on 156 data from previous studies and used to develop the SVR-based models. Thirteen potential factors affecting the compressive strength of LC3-ECC were comprehensively considered in the model. The results show all hybrid SVR prediction models can reach the Coefficient of determination (R2) above 0.95 for the testing set and 0.97 for the training set. Radar and Taylor plots also show better overall prediction performance of the hybrid SVR models than several traditional machine learning techniques, which confirms the superiority of the three proposed methods. The successful development of this predictive model can provide scientific guidance for LC3-ECC materials and further apply to such low-carbon, sustainable cement-based materials.

Effects of Some Construction Variables on the Hydraulic Conductivity of Soil-Cement in Low Permeable Applications (시공조건이 시멘트계 고화토의 투수계수에 미치는 영향)

  • 정문경;김강석;우제윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.427-434
    • /
    • 2000
  • Hydraulic conductivity of soil-cement was measured as a function of some selected construction variables that are often encountered in practice. They are initial (or compaction) water content, delayed compaction after mixing, and repeated freezing and thawing. Sandy and clayey soils were used. The hardening agent used was a cement based soil stabilizer consisting of 80% of ordinary Portland cement and 20% of a combination of supplementary materials. Hydraulic conductivity of soil-cement with varying initial water content was, in trend, similar to that of compacted clay. Hydraulic conductivity of soil-cement decreased with increasing initial water content and reached its minimum when compacted wet of optimum water content. Pore size distributions of soil cement at different initial water contents were analyzed using mercury intrusion porosimetry. The analysis showed that dryer condition led to the formation of larger pores with lesser total pore volume; smaller pores with larger total pore volume at wetter condition. Hydraulic conductivity of soil-cement increased by orders in magnitude when specimen underwent delayed compaction of longer than 4 hours after mixing and repeated freezing and thawing.

  • PDF

An Experimental Study on Crack Self-Healing and Mechanical Recovery Performance of Cement Composites Materials Using Encapsulated Expandable Inorganic Materials based Solid Healing Materials (캡슐화된 팽창성 무기재료 기반 고상 치유재 활용 시멘트 복합재료의 균열 자기치유 및 역학적 회복성능에 관한 실험적 연구)

  • Choi, Yun-Wang;Nam, Eun-Joon;Kim, Cheol-Gyu;Oh, Sung-Rok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.92-100
    • /
    • 2022
  • In this paper, to evaluate the effect of SC on the crack self-healing performance and mechanical recovery performance of cement composites, encapsulated intumescent inorganic material-based solid healing materials were prepared. SC was mixed with cement composite materials to evaluate the basic properties, permeability test, and load reload test. SC slightly improved the flow of cement composites, and the compressive strength decreased by about 10 %. Also, the flexural strength decreased by about 30 %. It was found that when SC was mixed with the cement composite material by 5 %, the crack self-healing rate of Plain was improved by about 𝜟10 %. As a result of the load reload test, it was found that the mechanical recovery rate of Plain was improved by about 𝜟20 %. In addition, as a result of analyzing the correlation between the crack self-healing rate and the mechanical recovery rate by the load reload test, it is judged that the healing area of the Plain can be increased due to SC.

Evaluation of Performance of Adhesion and Waterproof Using Polymer-portland-cement Concrete (PPCC(Polymer-portland-cement concrete)를 이용한 방수 및 부착 성능 평가)

  • Kim, Kyung-Hwan;Park, Mi-Yun;Chung, Won-Yong;Moon, Jae-Woo;Jang, Seung-Yup
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3172-3179
    • /
    • 2011
  • Several materials using polymer-portland-cement concrete have developed to have not only strength of attachment with body, but also waterproof function and strong anti-sodium chloride properties. Especially, in case of railway, unlike other public transportation, it is very difficult to doing the repair and reinforcement work of structure during service time. Therefore, the development and study of materials having characteristics of structural strength, unification behavior with body, and resistance of crack are very important. Accordingly, the characteristic of material of polymer based concrete is indicated compared with the experiment and analysis through this study, and suggested application to railway tunnel, bridge, and concrete track structure.

  • PDF

The Combustion Character of Polymer Modified Cement Mortar (폴리머 시멘트 모르타르의 연소특성 평가)

  • Park, Dong-Cheon;Oh, Kwang-Suek;Kim, Hyo-Youl;Oh, Sang-Gyun;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.63-66
    • /
    • 2008
  • Not only mechanical properties, bonding properties, electro chemical properties, etc. but also fire safety is required in patch repair materials such as polymer modified cement mortar (PCM) which are used to deteriorated reinforced concrete structure. Unfortunately, it is very difficult to choice the appropriate repair materials because there are not enough information about fire safety properties of PCM. In this study, The combustion characters of PCM were evaluated through the heat release rate test and non-combustibility test. The pyrogenicity test uses the cone calorimeter based on the oxygen consumption method. The non-combustibility test is from the temperature change inside the furnace during the test. The effect of the types of polymer and polymer content were evaluated from the series of test. The results are like followings. 1) The higher the W/C of PCM, the lower the gross calorific value and heat generation rate in the heat release rate test. The amount of heat generation of PCM is like the order of VVA, EVA, and SBR in this study. 2) Some materials such as E45-100, E50-100, E60-100, S50-50, and S50-100 were estimated as not appropriate building materials in the non combustibility test.

  • PDF

Simulation of Hydration of Portland Cement Blended With Mineral Admixtures

  • Wang, Xiaoyong;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.565-566
    • /
    • 2009
  • Supplementary cementing materials (SCM), such as silica fume, slag, and low-calcium fly ash, have been widely used as mineral admixtures in high strength and high performance concrete. Due to the chemical and physical effect of SCM on hydration, compared with Portland cement, hydration process of cement incorporating SCM is much more complex. This paper presents a numerical hydration model which is based on multi-component concept and can simulate hydration of cement incorporating SCM. The proposed model starts with mixture proportion of concrete and considers both chemical and physical effect of SCM on hydration. Using this proposed model, this paper predicts the following properties of hydrating cement-SCM blends as a function of hydration time: reaction ratio of SCM, calcium hydroxide content, heat evolution, porosity, chemically bound water and the development of the compressive strength of concrete. The prediction results agree well with experiment results.

  • PDF

Time-Dependent Behavior of Saturated Cellulose Fiber Reinforced Cement(CFRC) Pipe

  • Choi, Yeol
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.161-164
    • /
    • 2006
  • Cellulose fiber reinforced cement(CFRC) pipe has been gradually introduced in the pipe market as a replacement of previously popular asbestos cement pipes. Since CFRC pipe is still relatively unknown in the pipe market, there are great concerns for the design and application in practice related to the time-dependent behavior of CFRC under long-term sustained loading. This paper presents an experimental investigation of the time-dependent behavior of cellulose fiber reinforced cement(CFRC) pipe. A total of six CFRC pipes were tested under various loading levels, and their vertical deformation was recorded to understand the characteristics of the time-dependent behavior. Based on the test results, a factor of safety(FS) of 1.82 is proposed, and a regression factor(R) of 1.88 is estimated for the application of CFRC pipes in practice.

Strengthening of cement blended soft clay with nano-silica particles

  • Thomas, Geethu;Rangaswamy, Kodi
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.505-516
    • /
    • 2020
  • In recent years, Nano-technology significantly invaded the field of Geotechnical engineering, particularly in soil stabilisation techniques. Stabilisation of weak soil is envisioned to modify various soil characteristics by the addition of natural or synthetic materials into the virgin soil. In the present study, laboratory experiments were executed to investigate the influence of nano-silica particles in the consistency limits, compressive strength of the soft clay blended with cement. The results revealed that the high compressibility behaviour of soft clay modified to medium-stiff condition with fewer dosages of cement and nano-silica. The mechanism behind the strength development is verified with the previous researches as well as from Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction test (XRD) and Scanning Electron Microscopy (SEM) analysis. Based on the results, the presence of nano-silica in soft clay blended with cement has a positive effect on the behaviour of soil. This technique proves to be very economical and less detrimental to the environment.

Measurement of the construction structure of hot-heated cement using nitrogen adsorption method (질소흡착법을 사용한 고온 가열 시멘트의 세공구조 측정)

  • Kim, Min-Hyouck;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.140-141
    • /
    • 2020
  • Concrete has a lower thermal conductivity or thermal diffusion coefficient compared to other building materials, so it is widely used as fireproof compartment material or refractory material for structures. However, in the event of thermal damage such as fire, cement curing agents and aggregates act differently, resulting in heat generation or deterioration of tissue due to dehydration, resulting in deterioration of physical properties and fire resistance. Therefore, in this study, the processing structure of cement paste is measured through nitrogen absorption method. The test specimen is a cement paste of 40% W/C and is set at 1000 ℃ under heating temperature conditions. As the temperature rose, the micro-pore mass below was reduced based on about 0.01 감소m, but the air gap above that was increased.Thus, in the range of pores measured in nitrogen adsorption, the air mass tended to decrease under high temperature conditions.

  • PDF