• 제목/요약/키워드: cement-based materials

검색결과 584건 처리시간 0.024초

Numerical investigation on tortuosity of transport paths in cement-based materials

  • Zuo, Xiao-Bao;Sun, Wei;Liu, Zhi-Yong;Tang, Yu-Juan
    • Computers and Concrete
    • /
    • 제13권3호
    • /
    • pp.309-323
    • /
    • 2014
  • Based on the compositions and structures of cement-based materials, the geometrical models of the tortuosity of transport paths in hardened cement pastes, mortar and concrete, which are associated with the capillary porosity, cement hydration degree, mixture particle shape, aggregate volume fraction and water-cement ratio, are established by using a geometric approach. Numerical simulations are carried out to investigate the effects of material parameters such as water-cement ratio, volume fraction of the mixtures, shape and size of aggregates and cement hydration degree, on the tortuosity of transport paths in hardened cement pastes, mortar and concrete. Results indicate that the transport tortuosity in cement-based materials decreases with the increasing of water-cement ratio, and increases with the cement hydration degree, the volume fraction of cement and aggregate, the shape factor and diameter of aggregates, and the material parameters related to cement pastes, such as the water-cement ratio, cement hydration degree and cement volume fraction, are the primary factors that influence the transport tortuosity of cement-based materials.

나노재료를 혼입한 시멘트 페이스트의 역학적 특성 (Mechanical Properties of Cement Paste with Nanomateirals)

  • 최익제;김지현;정철우
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.193-194
    • /
    • 2020
  • Recently, as the use of high-performance concrete has become common, various problems related to high-performance concrete have become an issue. Among them, self-shrinkage of cement paste due to low water cement ratio is known to cause problems in the volume stability of concrete. To improve this, studies related to the mixing technology of cement-based materials and nano materials have been actively conducted. Looking at the results of prior research related to nano material mixing technology, generally, research results have been reported in which nano materials are incorporated into cement-based materials to improve material properties1). Among them, it was shown that the mechanical performance and various types of functionality of the cement composite are expressed. Among nano materials, carbon nanotubes (hereinafter referred to as CNTs) and graphenes are used in a mixture with cement-based materials. Accordingly, this study intends to compare the mechanical properties by incorporating various CNTs and graphene into cement paste.

  • PDF

Numerical modelling of effective thermal conductivity of hardened cement paste

  • Cheng Liu;Qiang Liu;Jianming Gao;Yunsheng Zhang
    • Computers and Concrete
    • /
    • 제32권6호
    • /
    • pp.567-576
    • /
    • 2023
  • In this study, a 3D microstructure-based model is established to simulate the effective thermal conductivity of cement paste, covering varying influencing factors associated with microstructure and thermal transfer mechanisms. The virtual cement paste divided into colloidal C-S-H and heterogeneous paste are reconstructed based on its structural attributes. Using the two-level hierarchical cement pastes as inputs, a lattice Boltzmann model for heat conduction is presented to predict the thermal conductivity. The results suggest that due to the Knudsen effect induced by the nanoscale pore, the thermal conductivity of air in C-S-H gel pore is significantly decreased, maximumly accounting for 3.3% thermal conductivity of air at the macroscale. In the cement paste, the thermal conductivities of dried and saturated cement pastes are stable at the curing age larger than 100 h. The high water-to-cement ratio can decrease the thermal conductivity of cement paste.

레진시멘트의 종류와 특성 (Type and Characteristics of Polymer-based Luting Materials)

  • 김아진;배지명
    • 대한치과의사협회지
    • /
    • 제53권3호
    • /
    • pp.178-186
    • /
    • 2015
  • Dental polymer-based luting materials are classified into esthetic resin cement, adhesive resin cement and self-adhesive resin cement. Due to the different component of each type of resin cement, the preconditioning method of tooth surface and the steps are different from each type of resin cement. The pre-treatment of adherend (ceramic, resin and metal) surface also varies with the type of resin cement and the manufacturer. In this study, the characteristics of each type of resin cement, mechanical properties, indication and advantages were investigated. Through these, clinical tips on using resin cements were suggested.

TiO2 입자의 사이즈가 바인더젯 3D 프린팅 시멘트계 재료의 특성에 미치는 영향 (Effect of nano-TiO2 size on the properties of cement-based materials produced by binder jet 3D printing)

  • 유준성;리패기;배성철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.188-189
    • /
    • 2022
  • With the development of nano-reinforcement technology, TiO2 nanomaterials have received widespread attention as one of the additives without pozzolanic reaction, which can be used to improve the mechanical properties of cement-based materials. Meanwhile, with the development of additive manufacturing technology or known as 3D printing technology, its application in the construction field has also got noticed. Therefore, in this work, the effect of three sizes of TiO2 on the compressive strength of hardened cement-based materials fabricated by binder jetting 3d printing was evaluated. According to the results, the TiO2 particles with larger sizes can provide better reinforcement to the hardened cement due to its more significant filling effect.

  • PDF

고기능성 시멘트계 복합재료 배합비 및 양생조건에 따른 휨부재의 거동 (Behavior of Engineered Cementitious Composite(ECC) Flexural Members Based on Mix Proportions and Curing Conditions)

  • 경민수;김동완;배병원;전경숙;임윤묵;김장호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.361-366
    • /
    • 2003
  • Recently, construction materials have been guickly advancing. Especially, the rate of development of cement based construction materials is much quicker than steel or composite materials. In order to optimize the ductility and strength of cement based materials, Micro-Mechanics based fiber concrete called Engineered Cement Composite (ECC) has been developed and studied extensively by many researchers in the field due to ECC's remarkable flexural strain and strength capacities, many leading nation (i.e., US, Japan and European countries have reached the point of being able to use ECC in actual constructions. But, due to the belated interest in the field, Korea is lagging behind the leading countries. ECC's ability to use its short fibers to bridge micro-cracks (50-80㎛ in width) allows great ductility and strength. ,In this study, ECC with superior material capacities are manufactured using domestic materials such as cement, silica sand, metal cellulose, etc. Using only domestic products, the optimal W/C ratio and mixing procedures are determined.

  • PDF

PVA 및 붕사를 사용한 고요변성 시멘트 계열 재료 제조를 위한 기초 물성 분석 (Fundamental Properties Analysis for Thixotropic Cement-Based Materials Using PVA and Borax)

  • 이향선;이유정;이영준;한동엽
    • 한국건축시공학회지
    • /
    • 제20권3호
    • /
    • pp.213-221
    • /
    • 2020
  • 본 연구의 목적은 시멘트 계열재료에 요변성을 부여하기 위하는 것이다. 이를 위해 PVA와 붕사의 결합을 이용하였다. 즉, PVA와 붕사 수용액을 시멘트 페이스트에 첨가하여 PVA 및 붕사의 결합에 의한 요변성 발현여부를 확인하였다. 시멘트 계열 재료에서 요변성 발현은 시공과정에서 다양한 이점을 확보할 수 있으며 특히 최근 주된 타설 방법인 관을 사용한 타설 방법에서 유리하게 작용할 수 있다. 본 연구의 결과로써 시멘트 페이스트 내부에서 PVA와 붕사의 결합이 유효하다는 것을 알 수 있었다. 결과적으로 시멘트 계열 재료에 대하여 PVA와 붕사를 이용하여 요변성을 부여할 수 있었다. 향후 본 연구의 결과를 이용하여 다양한 형태의 시멘트 계열재료의 시공성 개선에 도움이 될 것으로 기대한다.

Waste glass powder and its effect on the fresh and mechanical properties of concrete: A state of the art review

  • He, Zhi-hai;Yang, Ying;Zeng, Hao;Chang, Jing-yu;Shi, Jin-yan;Liu, Bao-ju
    • Advances in concrete construction
    • /
    • 제10권5호
    • /
    • pp.417-429
    • /
    • 2020
  • Waste glass is a global solid waste with huge reserves. The discarded waste glass has caused a series of problems such as resource waste and environmental pollution, so it is urgent to recycle waste glass with high replacement level. Glass powder (GP), as a supplementary cementitious material (SCM), used in cement-based materials has already become one of the important ways to recycle waste glass mainly attributed to its pozzolanic reaction and filling effect, especially to the suppressed ASR expansion. This paper demonstrates an overview of the properties of GP and its effect on the fresh and mechanical properties of cement-based materials. The study found that the influence of GP on the performance of cement-based materials mainly depends on its content, particle size, color and type, curing conditions, and other SCMs. Finally, based on the problems involved in the investigation of concrete containing GP, some corresponding suggestions and efforts are given to further guide the utilization of GP in cement-based materials.

바인더젯 3D 프린팅을 위한 TiO2 입자를 함유한 시멘트 기반 재료의 기계적 성능 및 광촉매 특성 분석 (Characterization of mechanical and photocatalytic performance on cement-based materials with TiO2 particles for binder jet 3D printing)

  • 유준성;리패기;배성철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.69-70
    • /
    • 2023
  • The development of advanced 3D printing technologies has opened up new opportunities for customized digital designs in the construction industry. Using nano- and micro-scale additives is expected to improve the performance of cement-based materials in 3D printing. TiO2 particles have been widely used as reinforcing additives in cement-based materials. Therefore, this study aims to investigate the application of cement-based materials containing multi-size TiO2 particles in binder jet 3D printing and the effect of different-size TiO2 particles on the performance of printed samples. TiO2 particles exhibit an excellent filling effect, which increases the density of the printed samples and promotes hydration, thereby improving the compressive strength of the samples. In addition, larger TiO2 particles exert more pronounced filling and photocatalytic effects on the resulting samples.

  • PDF

Regression-based algorithms for exploring the relationships in a cement raw material quarry

  • Tutmez, Bulent;Dag, Ahmet
    • Computers and Concrete
    • /
    • 제10권5호
    • /
    • pp.457-467
    • /
    • 2012
  • Using appropriate raw materials for cement is crucial for providing the required products. Monitoring relationships and analyzing distributions in a cement material quarry are important stages in the process. CaO, one of the substantial chemical components, is included in some raw materials such as limestone and marl; furthermore, appraising spatial assessment of this chemical component is also very critical. In this study, spatial evaluation and monitoring of CaO concentrations in a cement site are considered. For this purpose, two effective regression-based models were applied to a cement quarry located in Turkey. For the assessment, some spatial models were developed and performance comparisons were carried out. The results show that the regression-based spatial modelling is an efficient methodology and it can be employed to evaluate spatially varying relationships in a cement quarry.