Acknowledgement
The authors gratefully acknowledge the financial support from the Natural Science Foundation of Jiangsu Province (No. BK20220854) and Fundamental Research Funds for the Central Universities (No. RF1028623108).
References
- Bentz, D. (2007), "Transient plane source measurements of the thermal properties of hydrating cement pastes", Mater. Struct., 40(10), 1073. https://doi.org/10.1617/s11527-006-9206-9.
- Bentz, D. (2005), "CEMHYD3D: A three-dimensional cement hydration and microstructure development modeling package. Version 3.0.", NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD, USA.
- Bhattacharya, S. and Gubbins, K.E. (2006), "Fast method for computing pore size distributions of model materials", Langmuir, 22(18), 7726-7731. https://doi.org/10.1021/la052651k.
- Carson, J.K., Lovatt, S.J., Tanner, D.J. and Cleland, A.C. (2004), "Experimental measurements of the effective thermal conductivity of a pseudo-porous food analogue over a range of porosities and mean pore sizes", J. Food Eng., 63(1), 87-95. https://doi.org/10.1016/ S0260-8774(03)00286-3.
- Choktaweekarn, P., Saengsoy, W. and Tangtermsirikul, S. (2009), "A model for predicting thermal conductivity of concrete", Mag. Concrete Res., 61(4), 271-280. https://doi.org/10.1680/macr.2008.00049.
- Das, S., Aguayo, M., Rajan, S.D., Sant, G. and Neithalath, N. (2018), "Microstructure-guided numerical simulations to predict the thermal performance of a hierarchical cement-based composite material", Cement Concrete Compos., 87, 20-28. https://doi.org/10.1016/j.cemconc omp.2017.12.003.
- Erdem, H. (2017), "Predicting residual moment capacity of thermally insulated RC beams exposed to fire using artificial neural networks", Comput. Concrete, 19(6), 711-716. https://doi.org/10.12989/cac.2017.19.6.711.
- Etzler, F.M. and Fagundus, D.M. (1987), "The extent of vicinal water: Implications from the density of water in silica pores", J. Colloid Interface Sci., 115(2), 513-519. https://doi.org/10.1016/0021-9797(87)90069-5.
- Girimaji, S. (2012), "Lattice Boltzmann method: Fundamentals and engineering applications with computer codes", AIAA J., 51(1), 278-279. https://doi.org/10.2514/1.J05 1744.
- Guo, Y., He, X., Huang, W. and Wang, M. (2019), "Microstructure effects on effective gas diffusion coefficient of nanoporous materials", Transp. Porous Media, 126(2), 431-453. https://doi.org/10.1007/s11242-018-1165-4.
- Haha, M.B., Gallucci, E., Guidoum, A. and Scrivener, K.L. (2007), "Relation of expansion due to alkali silica reaction to the degree of reaction measured by SEM image analysis", Cement Concrete Res., 37(8), 1206-1214. https://doi.org/10.1016/j.cemconres.2007.04.016.
- He, X., Chen, S. and Doolen, G.D. (1998), "A novel thermal model for the lattice Boltzmann method in incompressible limit", J. Comput. Phys., 146(1), 282-300. https://doi.org/10.1006/jcph.1998.6057.
- Heinemann, U. (2008), "Influence of water on the total heat transfer in 'evacuated'insulations", Int. J. Thermophys., 29(2), 735-749. https://doi.org/10.1007/s10765-007-0361-1.
- Hochstein, D.P. and Meyer, C. (2016), "Measurement and prediction of thermal conductivity of cement paste", ACI Mater. J., 113(3), 317-322. https://doi.org/10.14359/51688643.
- Honorio, T., Bary, B. and Benboudjema, F. (2018), "Thermal properties of cement-based materials: Multiscale estimations at early-age", Cement Concrete Compos., 87, 205-219. https://doi.org/10.1016/j.cemconcomp.2018.01.003.
- Jennings, H.M. (2000), "A model for the microstructure of calcium silicate hydrate in cement paste", Cement Concrete Res., 30(1), 101-116. https://doi.org/10.1016/S0008-8846(99)00209-4.
- Jennings, H.M. (2004), "Colloid model of C- S- H and implications to the problem of creep and shrinkage", Mater. Struct., 37(1), 59-70. https://doi.org/10.1007/BF02481627.
- Jennings, H.M., Thomas, J.J., Gevrenov, J.S., Constantinides, G. and Ulm, F.J. (2007), "A multi-technique investigation of the nanoporosity of cement paste", Cement Concrete Res., 37(3), 329-336. https://doi.org/10.1016/j.cemconres.2006.03.021.
- Jennings, S. (1988), "The mean free path in air", J. Aero. Sci., 19(2), 159-166. https://doi.org/10.1016/0021-8502(88)90219-4.
- Jones, M. and McCarthy, A. (2005), "Preliminary views on the potential of foamed concrete as a structural material", Mag. Concrete Res., 57(1), 21-31. https://doi.org/10.1680/macr.2005.57.1.21.
- Kaganer, M.G. (1969), Thermal Insulation in Cryogenic Engineering, Israel Program for Scientific Translations, the University of California, CA, USA.
- Kim, K.H., Jeon, S.E., Kim, J.K. and Yang, S. (2003), "An experimental study on thermal conductivity of concrete", Cement Concrete Res., 33(3), 363-371. https://doi.org/10.1016/S 0008-8846(02)00965-1.
- Liu, C., Huang, R., Zhang, Y., Liu, Z. and Zhang, M. (2018a), "Modelling of irregular-shaped cement particles and microstructural development of Portland cement", Constr. Build. Mater., 168, 362-378. https://doi.org/10.1016/j.conbuildmat.2018.02.142.
- Liu, C., Qian, R., Liu, Z., Liu, G. and Zhang, Y. (2020a), "Multiscale modelling of thermal conductivity of phase change material/recycled cement paste incorporated cement-based composite material", Mater. Des., 191, 108646. https://doi.org/10.1016/j.matdes.2020.108646.
- Liu, C., Wang, F. and Zhang, M. (2020b), "Modelling of 3D microstructure and effective diffusivity of fly ash blended cement paste", Cement Concrete Compos., 110, 103586. https://doi.org/10.1016/ j.cemconcomp.2020.103586.
- Liu, C., Xie, D., She, W., Liu, Z., Liu, G., Yang, L. and Zhang, Y. (2018b), "Numerical modelling of elastic modulus and diffusion coefficient of concrete as a three-phase composite material", Constr. Build. Mater., 189, 1251-1263. https://doi.org/10.1016/j.conbuild mat.2018.08.191.
- Liu, Z., Zang, C., Hu, D., Zhang, Y., Lv, H., Liu, C. and She, W. (2019a), "Thermal conductivity and mechanical properties of a shape-stabilized paraffin/recycled cement paste phase change energy storage composite incorporated into inorganic cementitious materials", Cement Concrete Compos., 99, 165-174. https://doi.org/10.1016/j.cemconcomp.2019.03.013.
- Liu, Z., Zhang, S., Hu, D., Zhang, Y., Lv, H., Liu, C., Chen, Y. and Sun, J. (2019b), "Paraffin/red mud phase change energy storage composite incorporated gypsum-based and cementbased materials: Microstructures, thermal and mechanical properties", J. Hazard. Mater., 364, 608-620. https://doi.org/10.1016/j.jhazmat.2018.10.061.
- Log, T. and Gustafsson, S. (1995), "Transient plane source (TPS) technique for measuring thermal transport properties of building materials", Fire Mater., 19(1), 43-49. https://doi.org/10.1002/fam.810190107.
- Ma, H. and Li, Z. (2013), "Realistic pore structure of Portland cement paste: Experimental study and numerical simulation", Comput. Concrete, 11(4), 317-336. https://doi.org/10.12989/cac.2013.11.4.317.
- Maruyama, I. and Igarashi, G. (2014), "Cement reaction and resultant physical properties of cement paste", J. Adv. Concrete Technol., 12(6), 200-213. https://doi.org/10.3151/jact.12.200.
- Masoero, E., Del Gado, E., Pellenq, R.M., Ulm, F.J. and Yip, S. (2012), "Nanostructure and nanomechanics of cement: Polydisperse colloidal packing", Phys. Rev. Lett., 109(15), 155503. https://doi.org/10.1103/PhysRevLett.109.155503.
- Mikulic, D., Milovanovic, B. and Gabrijel, I. (2013), "Analysis of thermal properties of cement paste during setting and hardening", Nondestr Testing of Materials and Structures, Springer Dordrecht, Netherlands.
- Milovanovic, B., Pecur, I.B. and Gabrijel, I. (2011), "Measuring thermal properties of hydrating cement pastes", 31st Cement and Concrete Science Conference, Novel Developments and Innovation in Cementitious Materials, London, UK, September.
- Mounanga, P., Khelidj, A. and Bastian, G. (2004), "Experimental study and modelling approaches for the thermal conductivity evolution of hydrating cement paste", Adv. Cement Res., 16(3), 95-103. https://doi.org/10.1680/adcr.2004.16.3.95.
- Nonat, A. (2004), "The structure and stoichiometry of CSH", Cement Concrete Res., 34(9), 1521-1528. https://doi.org/10.1016/j.cemconres.2004.04.035.
- Powers, T.C. (1960), "Physical properties of cement paste", No. 154; Portland Cement Association, Washington, D.C., USA.
- Qomi, M.J.A., Ulm, F.J. and Pellenq, R.J.M. (2015), "Physical origins of thermal properties of cement paste", Phys. Rev. Appl., 3(6), 064010. https://doi.org/10.1103/PhysRevApplied.3.064010.
- Rajabipour, F., Giannini, E., Dunant, C., Ideker, J.H. and Thomas, M.D. (2015), "Alkali-silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps", Cement Concrete Res., 76, 130-146. https://doi.org/10.1016/j.cemconres.2015.05.024.
- Richardson, I. (2004), "Tobermorite/jennite-and tobermorite/calcium hydroxide-based models for the structure of CSH: Applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume", Cement Concrete Res., 34(9), 1733-1777. https://doi.org/10.1016/j.cemconres.2004.05.034.
- Schindler, A.K. and Folliard, K.J. (2005), "Heat of hydration models for cementitious materials", ACI Mater. J., 102(1), 24. https://doi.org/10.14359/14246.
- She, W., Zha, G., Yang, G., Jiang, J., Cao, X. and Du, Y. (2016), "Numerical analysis of the thermal behaviors of cellular concrete", Comput. Concrete, 18(3), 319-336. https://doi.org/10.12989/cac.2016.18.3.319.
- Sonnick, S., Meier, M., Ross-Jones, J., Erlbeck, L., Medina, I., Nirschl, H. and Radle, M. (2019), "Correlation of pore size distribution with thermal conductivity of precipitated silica and experimental determination of the coupling effect", Appl. Therm. Eng., 150, 1037-1045. https://doi.org/10.1016/j.applthermaleng.2019.01.074.
- Tang, S., Chen, E., Shao, H. and Li, Z. (2015), "A fractal approach to determine thermal conductivity in cement pastes", Constr. Build. Mater., 74, 73-82. https://doi.org/10.1016/j.conbuildmat.2014.10.016.
- Tu, X., Li, Z., Chen, A. and Pan, Z. (2018), "A multiscale numerical simulation approach for chloride diffusion and rebar corrosion with compensation model", Comput. Concrete, 21(4), 471-484. https://doi.org/10.12989/cac.2018.21.4.471.
- Ukrainczyk, N. and Koenders, E. (2014), "Representative elementary volumes for 3D modeling of mass transport in cementitious materials", Modell. Simul. Mater. Sci. Eng., 22(3), 035001. https://doi.org/10.1088/0965-0393/22/3/035001.
- Van Balen, K. (2005), "Carbonation reaction of lime, kinetics at ambient temperature", Cement Concrete Res., 35(4), 647-657. https://doi.org/10.1016/j.cemconres.2004.06.020.
- Vandamme, M., Ulm, F.J. and Fonollosa, P. (2010), "Nanogranular packing of C-S-H at substochiometric conditions", Cement Concrete Res., 40(1), 14-26. https://doi.org/10.1016/j.cemconres.2009.09.017.
- Wang, M., Wang, J., Pan, N. and Chen, S. (2007), "Mesoscopic predictions of the effective thermal conductivity for microscale random porous media", Phys. Rev. E, 75(3), 036702. https://doi.org/10.1103/PhysRevE.75.036702.
- Wang, Y., Ma, C., Liu, Y., Wang, D. and Liu, J. (2018), "A model for the effective thermal conductivity of moist porous building materials based on fractal theory", Int. J. Heat Mass Transf., 125, 387-399. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.063.
- Wu, T., Temizer, I. and Wriggers, P. (2013), "Computational thermal homogenization of concrete", Cement Concrete Compos., 35(1), 59-70. https://doi.org/10.1016/j.cemconcomp.2012.08.026.
- Xu, S., Liu, J. and Zeng, Q. (2018), "Towards better characterizing thermal conductivity of cement-based materials: The effects of interfacial thermal resistance and inclusion size", Mater. Des., 157, 105-118. https://doi.org/10.1016/j.matdes.2018.07.034.
- Yang, Y., Patel, R.A., Churakov, S.V., Prasianakis, N.I., Kosakowski, G. and Wang, M. (2019), "Multiscale modeling of ion diffusion in cement paste: Electrical double layer effects", Cement Concrete Compos., 96, 55-65. https://doi.org/10.1016/j.cemconcomp.2018.11.008.
- Yu, P., Duan, Y., Chen, E., Tang, S. and Wang, X. R. (2018), "Microstructure-based fractal models for heat and mass transport properties of cement paste", Int. J. Heat Mass Transf., 126, 432-447. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.150.
- Zhang, Y., Liu, C., Liu, Z., Liu, G. and Yang, L. (2017), "Modelling of diffusion behavior of ions in low-density and high-density calcium silicate hydrate", Constr. Build. Mater., 155, 965-980. https://doi.org/10.1016/j.conbuildmat.2017.08.128.
- Zhu, C.Y., Li, Z.Y., Pang, H.Q. and Pan, N. (2019), "Numerical modeling of the gas-contributed thermal conductivity of aerogels", Int. J. Heat Mass Transf., 131, 217-225. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.052.
- Zunino, F., Castro, J. and Lopez, M. (2015), "Thermo-mechanical assessment of concrete microcracking damage due to early-age temperature rise", Constr. Build. Mater., 81, 140-153. https://doi.org/10.1016/j.conbuildmat.2014.12.126.
- Zuo, X.B., Sun, W., Yu, C. and Wan, X.R. (2010), "Modeling of ion diffusion coefficient in saturated concrete", Comput. Concrete, 7(5), 421. https://doi.org/10.12989/cac.2010.7.5.421.