DOI QR코드

DOI QR Code

Numerical modelling of effective thermal conductivity of hardened cement paste

  • Cheng Liu (Jiangsu Key Laboratory for Construction Materials, School of Materials Science and Engineering, Southeast University) ;
  • Qiang Liu (Jiangsu Key Laboratory for Construction Materials, School of Materials Science and Engineering, Southeast University) ;
  • Jianming Gao (Jiangsu Key Laboratory for Construction Materials, School of Materials Science and Engineering, Southeast University) ;
  • Yunsheng Zhang (Jiangsu Key Laboratory for Construction Materials, School of Materials Science and Engineering, Southeast University)
  • Received : 2023.06.25
  • Accepted : 2023.07.21
  • Published : 2023.12.25

Abstract

In this study, a 3D microstructure-based model is established to simulate the effective thermal conductivity of cement paste, covering varying influencing factors associated with microstructure and thermal transfer mechanisms. The virtual cement paste divided into colloidal C-S-H and heterogeneous paste are reconstructed based on its structural attributes. Using the two-level hierarchical cement pastes as inputs, a lattice Boltzmann model for heat conduction is presented to predict the thermal conductivity. The results suggest that due to the Knudsen effect induced by the nanoscale pore, the thermal conductivity of air in C-S-H gel pore is significantly decreased, maximumly accounting for 3.3% thermal conductivity of air at the macroscale. In the cement paste, the thermal conductivities of dried and saturated cement pastes are stable at the curing age larger than 100 h. The high water-to-cement ratio can decrease the thermal conductivity of cement paste.

Keywords

Acknowledgement

The authors gratefully acknowledge the financial support from the Natural Science Foundation of Jiangsu Province (No. BK20220854) and Fundamental Research Funds for the Central Universities (No. RF1028623108).

References

  1. Bentz, D. (2007), "Transient plane source measurements of the thermal properties of hydrating cement pastes", Mater. Struct., 40(10), 1073. https://doi.org/10.1617/s11527-006-9206-9.
  2. Bentz, D. (2005), "CEMHYD3D: A three-dimensional cement hydration and microstructure development modeling package. Version 3.0.", NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD, USA.
  3. Bhattacharya, S. and Gubbins, K.E. (2006), "Fast method for computing pore size distributions of model materials", Langmuir, 22(18), 7726-7731. https://doi.org/10.1021/la052651k.
  4. Carson, J.K., Lovatt, S.J., Tanner, D.J. and Cleland, A.C. (2004), "Experimental measurements of the effective thermal conductivity of a pseudo-porous food analogue over a range of porosities and mean pore sizes", J. Food Eng., 63(1), 87-95. https://doi.org/10.1016/ S0260-8774(03)00286-3.
  5. Choktaweekarn, P., Saengsoy, W. and Tangtermsirikul, S. (2009), "A model for predicting thermal conductivity of concrete", Mag. Concrete Res., 61(4), 271-280. https://doi.org/10.1680/macr.2008.00049.
  6. Das, S., Aguayo, M., Rajan, S.D., Sant, G. and Neithalath, N. (2018), "Microstructure-guided numerical simulations to predict the thermal performance of a hierarchical cement-based composite material", Cement Concrete Compos., 87, 20-28. https://doi.org/10.1016/j.cemconc omp.2017.12.003.
  7. Erdem, H. (2017), "Predicting residual moment capacity of thermally insulated RC beams exposed to fire using artificial neural networks", Comput. Concrete, 19(6), 711-716. https://doi.org/10.12989/cac.2017.19.6.711.
  8. Etzler, F.M. and Fagundus, D.M. (1987), "The extent of vicinal water: Implications from the density of water in silica pores", J. Colloid Interface Sci., 115(2), 513-519. https://doi.org/10.1016/0021-9797(87)90069-5.
  9. Girimaji, S. (2012), "Lattice Boltzmann method: Fundamentals and engineering applications with computer codes", AIAA J., 51(1), 278-279. https://doi.org/10.2514/1.J05 1744.
  10. Guo, Y., He, X., Huang, W. and Wang, M. (2019), "Microstructure effects on effective gas diffusion coefficient of nanoporous materials", Transp. Porous Media, 126(2), 431-453. https://doi.org/10.1007/s11242-018-1165-4.
  11. Haha, M.B., Gallucci, E., Guidoum, A. and Scrivener, K.L. (2007), "Relation of expansion due to alkali silica reaction to the degree of reaction measured by SEM image analysis", Cement Concrete Res., 37(8), 1206-1214. https://doi.org/10.1016/j.cemconres.2007.04.016.
  12. He, X., Chen, S. and Doolen, G.D. (1998), "A novel thermal model for the lattice Boltzmann method in incompressible limit", J. Comput. Phys., 146(1), 282-300. https://doi.org/10.1006/jcph.1998.6057.
  13. Heinemann, U. (2008), "Influence of water on the total heat transfer in 'evacuated'insulations", Int. J. Thermophys., 29(2), 735-749. https://doi.org/10.1007/s10765-007-0361-1.
  14. Hochstein, D.P. and Meyer, C. (2016), "Measurement and prediction of thermal conductivity of cement paste", ACI Mater. J., 113(3), 317-322. https://doi.org/10.14359/51688643.
  15. Honorio, T., Bary, B. and Benboudjema, F. (2018), "Thermal properties of cement-based materials: Multiscale estimations at early-age", Cement Concrete Compos., 87, 205-219. https://doi.org/10.1016/j.cemconcomp.2018.01.003.
  16. Jennings, H.M. (2000), "A model for the microstructure of calcium silicate hydrate in cement paste", Cement Concrete Res., 30(1), 101-116. https://doi.org/10.1016/S0008-8846(99)00209-4.
  17. Jennings, H.M. (2004), "Colloid model of C- S- H and implications to the problem of creep and shrinkage", Mater. Struct., 37(1), 59-70. https://doi.org/10.1007/BF02481627.
  18. Jennings, H.M., Thomas, J.J., Gevrenov, J.S., Constantinides, G. and Ulm, F.J. (2007), "A multi-technique investigation of the nanoporosity of cement paste", Cement Concrete Res., 37(3), 329-336. https://doi.org/10.1016/j.cemconres.2006.03.021.
  19. Jennings, S. (1988), "The mean free path in air", J. Aero. Sci., 19(2), 159-166. https://doi.org/10.1016/0021-8502(88)90219-4.
  20. Jones, M. and McCarthy, A. (2005), "Preliminary views on the potential of foamed concrete as a structural material", Mag. Concrete Res., 57(1), 21-31. https://doi.org/10.1680/macr.2005.57.1.21.
  21. Kaganer, M.G. (1969), Thermal Insulation in Cryogenic Engineering, Israel Program for Scientific Translations, the University of California, CA, USA.
  22. Kim, K.H., Jeon, S.E., Kim, J.K. and Yang, S. (2003), "An experimental study on thermal conductivity of concrete", Cement Concrete Res., 33(3), 363-371. https://doi.org/10.1016/S 0008-8846(02)00965-1.
  23. Liu, C., Huang, R., Zhang, Y., Liu, Z. and Zhang, M. (2018a), "Modelling of irregular-shaped cement particles and microstructural development of Portland cement", Constr. Build. Mater., 168, 362-378. https://doi.org/10.1016/j.conbuildmat.2018.02.142.
  24. Liu, C., Qian, R., Liu, Z., Liu, G. and Zhang, Y. (2020a), "Multiscale modelling of thermal conductivity of phase change material/recycled cement paste incorporated cement-based composite material", Mater. Des., 191, 108646. https://doi.org/10.1016/j.matdes.2020.108646.
  25. Liu, C., Wang, F. and Zhang, M. (2020b), "Modelling of 3D microstructure and effective diffusivity of fly ash blended cement paste", Cement Concrete Compos., 110, 103586. https://doi.org/10.1016/ j.cemconcomp.2020.103586.
  26. Liu, C., Xie, D., She, W., Liu, Z., Liu, G., Yang, L. and Zhang, Y. (2018b), "Numerical modelling of elastic modulus and diffusion coefficient of concrete as a three-phase composite material", Constr. Build. Mater., 189, 1251-1263. https://doi.org/10.1016/j.conbuild mat.2018.08.191.
  27. Liu, Z., Zang, C., Hu, D., Zhang, Y., Lv, H., Liu, C. and She, W. (2019a), "Thermal conductivity and mechanical properties of a shape-stabilized paraffin/recycled cement paste phase change energy storage composite incorporated into inorganic cementitious materials", Cement Concrete Compos., 99, 165-174. https://doi.org/10.1016/j.cemconcomp.2019.03.013.
  28. Liu, Z., Zhang, S., Hu, D., Zhang, Y., Lv, H., Liu, C., Chen, Y. and Sun, J. (2019b), "Paraffin/red mud phase change energy storage composite incorporated gypsum-based and cementbased materials: Microstructures, thermal and mechanical properties", J. Hazard. Mater., 364, 608-620. https://doi.org/10.1016/j.jhazmat.2018.10.061.
  29. Log, T. and Gustafsson, S. (1995), "Transient plane source (TPS) technique for measuring thermal transport properties of building materials", Fire Mater., 19(1), 43-49. https://doi.org/10.1002/fam.810190107.
  30. Ma, H. and Li, Z. (2013), "Realistic pore structure of Portland cement paste: Experimental study and numerical simulation", Comput. Concrete, 11(4), 317-336. https://doi.org/10.12989/cac.2013.11.4.317.
  31. Maruyama, I. and Igarashi, G. (2014), "Cement reaction and resultant physical properties of cement paste", J. Adv. Concrete Technol., 12(6), 200-213. https://doi.org/10.3151/jact.12.200.
  32. Masoero, E., Del Gado, E., Pellenq, R.M., Ulm, F.J. and Yip, S. (2012), "Nanostructure and nanomechanics of cement: Polydisperse colloidal packing", Phys. Rev. Lett., 109(15), 155503. https://doi.org/10.1103/PhysRevLett.109.155503.
  33. Mikulic, D., Milovanovic, B. and Gabrijel, I. (2013), "Analysis of thermal properties of cement paste during setting and hardening", Nondestr Testing of Materials and Structures, Springer Dordrecht, Netherlands.
  34. Milovanovic, B., Pecur, I.B. and Gabrijel, I. (2011), "Measuring thermal properties of hydrating cement pastes", 31st Cement and Concrete Science Conference, Novel Developments and Innovation in Cementitious Materials, London, UK, September.
  35. Mounanga, P., Khelidj, A. and Bastian, G. (2004), "Experimental study and modelling approaches for the thermal conductivity evolution of hydrating cement paste", Adv. Cement Res., 16(3), 95-103. https://doi.org/10.1680/adcr.2004.16.3.95.
  36. Nonat, A. (2004), "The structure and stoichiometry of CSH", Cement Concrete Res., 34(9), 1521-1528. https://doi.org/10.1016/j.cemconres.2004.04.035.
  37. Powers, T.C. (1960), "Physical properties of cement paste", No. 154; Portland Cement Association, Washington, D.C., USA.
  38. Qomi, M.J.A., Ulm, F.J. and Pellenq, R.J.M. (2015), "Physical origins of thermal properties of cement paste", Phys. Rev. Appl., 3(6), 064010. https://doi.org/10.1103/PhysRevApplied.3.064010.
  39. Rajabipour, F., Giannini, E., Dunant, C., Ideker, J.H. and Thomas, M.D. (2015), "Alkali-silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps", Cement Concrete Res., 76, 130-146. https://doi.org/10.1016/j.cemconres.2015.05.024.
  40. Richardson, I. (2004), "Tobermorite/jennite-and tobermorite/calcium hydroxide-based models for the structure of CSH: Applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume", Cement Concrete Res., 34(9), 1733-1777. https://doi.org/10.1016/j.cemconres.2004.05.034.
  41. Schindler, A.K. and Folliard, K.J. (2005), "Heat of hydration models for cementitious materials", ACI Mater. J., 102(1), 24. https://doi.org/10.14359/14246.
  42. She, W., Zha, G., Yang, G., Jiang, J., Cao, X. and Du, Y. (2016), "Numerical analysis of the thermal behaviors of cellular concrete", Comput. Concrete, 18(3), 319-336. https://doi.org/10.12989/cac.2016.18.3.319.
  43. Sonnick, S., Meier, M., Ross-Jones, J., Erlbeck, L., Medina, I., Nirschl, H. and Radle, M. (2019), "Correlation of pore size distribution with thermal conductivity of precipitated silica and experimental determination of the coupling effect", Appl. Therm. Eng., 150, 1037-1045. https://doi.org/10.1016/j.applthermaleng.2019.01.074.
  44. Tang, S., Chen, E., Shao, H. and Li, Z. (2015), "A fractal approach to determine thermal conductivity in cement pastes", Constr. Build. Mater., 74, 73-82. https://doi.org/10.1016/j.conbuildmat.2014.10.016.
  45. Tu, X., Li, Z., Chen, A. and Pan, Z. (2018), "A multiscale numerical simulation approach for chloride diffusion and rebar corrosion with compensation model", Comput. Concrete, 21(4), 471-484. https://doi.org/10.12989/cac.2018.21.4.471.
  46. Ukrainczyk, N. and Koenders, E. (2014), "Representative elementary volumes for 3D modeling of mass transport in cementitious materials", Modell. Simul. Mater. Sci. Eng., 22(3), 035001. https://doi.org/10.1088/0965-0393/22/3/035001.
  47. Van Balen, K. (2005), "Carbonation reaction of lime, kinetics at ambient temperature", Cement Concrete Res., 35(4), 647-657. https://doi.org/10.1016/j.cemconres.2004.06.020.
  48. Vandamme, M., Ulm, F.J. and Fonollosa, P. (2010), "Nanogranular packing of C-S-H at substochiometric conditions", Cement Concrete Res., 40(1), 14-26. https://doi.org/10.1016/j.cemconres.2009.09.017.
  49. Wang, M., Wang, J., Pan, N. and Chen, S. (2007), "Mesoscopic predictions of the effective thermal conductivity for microscale random porous media", Phys. Rev. E, 75(3), 036702. https://doi.org/10.1103/PhysRevE.75.036702.
  50. Wang, Y., Ma, C., Liu, Y., Wang, D. and Liu, J. (2018), "A model for the effective thermal conductivity of moist porous building materials based on fractal theory", Int. J. Heat Mass Transf., 125, 387-399. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.063.
  51. Wu, T., Temizer, I. and Wriggers, P. (2013), "Computational thermal homogenization of concrete", Cement Concrete Compos., 35(1), 59-70. https://doi.org/10.1016/j.cemconcomp.2012.08.026.
  52. Xu, S., Liu, J. and Zeng, Q. (2018), "Towards better characterizing thermal conductivity of cement-based materials: The effects of interfacial thermal resistance and inclusion size", Mater. Des., 157, 105-118. https://doi.org/10.1016/j.matdes.2018.07.034.
  53. Yang, Y., Patel, R.A., Churakov, S.V., Prasianakis, N.I., Kosakowski, G. and Wang, M. (2019), "Multiscale modeling of ion diffusion in cement paste: Electrical double layer effects", Cement Concrete Compos., 96, 55-65. https://doi.org/10.1016/j.cemconcomp.2018.11.008.
  54. Yu, P., Duan, Y., Chen, E., Tang, S. and Wang, X. R. (2018), "Microstructure-based fractal models for heat and mass transport properties of cement paste", Int. J. Heat Mass Transf., 126, 432-447. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.150.
  55. Zhang, Y., Liu, C., Liu, Z., Liu, G. and Yang, L. (2017), "Modelling of diffusion behavior of ions in low-density and high-density calcium silicate hydrate", Constr. Build. Mater., 155, 965-980. https://doi.org/10.1016/j.conbuildmat.2017.08.128.
  56. Zhu, C.Y., Li, Z.Y., Pang, H.Q. and Pan, N. (2019), "Numerical modeling of the gas-contributed thermal conductivity of aerogels", Int. J. Heat Mass Transf., 131, 217-225. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.052.
  57. Zunino, F., Castro, J. and Lopez, M. (2015), "Thermo-mechanical assessment of concrete microcracking damage due to early-age temperature rise", Constr. Build. Mater., 81, 140-153. https://doi.org/10.1016/j.conbuildmat.2014.12.126.
  58. Zuo, X.B., Sun, W., Yu, C. and Wan, X.R. (2010), "Modeling of ion diffusion coefficient in saturated concrete", Comput. Concrete, 7(5), 421. https://doi.org/10.12989/cac.2010.7.5.421.