• 제목/요약/키워드: cement toxicity

검색결과 42건 처리시간 0.026초

간접수용복 시멘트 처리로 유발된 활성산소종에 의한 치주줄기세포 독성 (Reactive oxygen species-mediated cytotoxicity of indirect restorative cement on periodontal stem cells)

  • 박소영
    • 한국치위생학회지
    • /
    • 제21권5호
    • /
    • pp.545-553
    • /
    • 2021
  • Objectives: This study aimed to investigate the cytotoxicity of Nexus RMGIC, an indirect restorative cement, on cell survival rate and reactive oxygen species (ROS) production in periodontal stem cells (PDSCs). Methods: PDSCs were incubated with serially diluted Nexus RMGIC eluates with and without the addition of N-acetyl-cysteine (NAC). Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The ROS generation was determined by measuring the fluorescence intensity for 2',7'-dichlorofluorescin diacetate. Results: Nexus RMGIC exposure decreased cell proliferation and cell survival rate in a dose-dependent manner (1:8, 1:4, 1:2, 1:1) in PDSCs. The cytotoxicity of Nexus RMGIC was inhibited by treatment with 10-mM NAC. In addition, the production of ROS was detected by immunofluorescence after PDSCs were exposed to Nexus RMGIC. However, ROS generation was significantly suppressed in the NAC pretreatment compared with the Nexus RMGIC group. Conclusions: Nexus RMGIC increased the cytotoxicity and ROS generation. ROS was involved in Nexus RMGIC-induced cell toxicity.

접착형 구조 금 인레이의 접착 형태, 강도 및 파절 양태에 관한 실험적 연구 (AN EXPERIMENTAL STUDY ON ADHESION PATTERN, ADHESION STRENGTH AND FRACTURE PATTERN OF THE ADHESIVE CAST GOLD INLAY)

  • 한승렬;홍찬의
    • Restorative Dentistry and Endodontics
    • /
    • 제19권1호
    • /
    • pp.64-72
    • /
    • 1994
  • Zinc Phosphate Cement hand been used for about more than 100 years in luting of cast gold inlay. But many scientists had been trying to develop the new form of luting agent because the ZPC hand shown the lack of adhesiveness on the tooth structure and the toxicity to the pulp tissue. Recently many researches about the surface treatment of the cast body are being done to increase the adhesion of cement to it. The conventional Class I gold inlays were fabricated in the 20 permanent molars. After the internal surface of the cast body was sandblasted with $Al_2O_3$ particles and was tin-plated, the inlays were cemented with adhesive cement [G I cement and resin cement(Super-Bond & $Panavia_{EX}$)] and the evaluation on the adhesion pattern, adhesive strength and the fracture pattern of the adhesive cast gold inlay was compared to that of the cast gold inlay cemented conventionally with ZPC. The results were as follows : 1. The surface roughness of the cast body was increased significantly after sandblasting with the $Al_2O_3$ particles and the tin oxide layer, which was consisted of round particles, came into being. 2. The bond strength was in the order of Super-Bond, ZPC, Fuji I, $Panavia_{EX}$ group. The group cemented with Super-Bond showed statistically greater strength than the other groups(p<0.05). 3. The group cemented with ZPC was fallen apart by principal adhesion failure and that with Fuji I was by complete adhesion failure. But the group with Super-Bond showed pricncipal cohesive failure pattern and in the group with $Panavia_{EX}$, complete cohesive fracture pattern was shown and small protion of tooth structure was fractured out with cast body and the fractured surface showed the figure just as the enamel prism. 4. Various gaps were shown at the pulpal side regardless of little gap at the side walls of the cavity in all groups. Only the Super-Bond was attached to the tooth structure and the other cements were detached from both the tooth and the cast body.

  • PDF

개정 토양용출시험법에 따른 비소오염토양의 고형화/안정화 공법 국내 적용성 평가 (Assessment of applicability on Solidification/Stabilization of Arsenic in contaminated Soil According to the Revised Korean Standard Leaching Test for Soil)

  • 홍성혁;박혜민;최원호;박주양
    • 상하수도학회지
    • /
    • 제25권1호
    • /
    • pp.1-5
    • /
    • 2011
  • Arsenic is one of the most abundant contaminant found in waste mine tailings and soil around refinery, Because of its carcinogenic property, the countries like United States of America and Europe have made stringent regulations which govern the concentration of arsenic in soil. The study focuses on solidification/stabilization for removal of arsenic from soil. Cement was used to solidify/stabilize the abandoned soil primarily contaminated with arsenic (up to 68.92 mg/kg) in and around refinery. Solidified/stabilized (s/s) forms in the range of cement contents 5-30 wt % were evaluated to determine the optimal binder content. Revised Korean standard leaching tests (KSLT), toxicity characteristic leaching procedures (TCLP), Old Korea standard leaching test and revised Korea standard leaching test were used for chemical characterization of the S/S forms. The addition of 10 % cement remarkably reduced the leachability of arsenic in contaminated soil. The concentration of As in leachate of TCLP, KSLT, and old KSLT for soil are below the standard. However that in leachate of revised KSLT is above the standard. Because of extraction fluid used in revised KSLT is very strong acid. It is arsenic in s/s with binder should be exhaustingly leached. Therefore S/S process would not be available for As treatment in soil in Korea.

건설폐토석의 성토에 따른 지반환경적 영향 (Geoenvironmental Influence on the Recycled Soil from Demolition Concrete Structures for using in Low Landfilling)

  • 신은철;강정구;안민희
    • 한국지반환경공학회 논문집
    • /
    • 제12권12호
    • /
    • pp.21-30
    • /
    • 2011
  • 산업단지 조성 시 건설폐토석을 활용하기 위해 건설폐기물로부터 선별 처리된 토석에 대하여 물리 역학적 특성과 용출 특성을 분석하였다. 지반 내 알칼리 이온의 확산에 대한 실험은 XRF, ICP방법을 이용하여 분석하였다. 또한, 환경적인 영향을 확인하기 위하여 어류독성시험을 병행하였다. 건설폐토석은 실내실험에서 공학적인 성토기준과 토양오염 기준을 만족하였다. 그러나 건설폐토석과 물이 1:1의 비율로 혼합된 수용액은 알칼리 이온에 의해 높은 농도의 pH를 유지하는 것으로 나타났다. 수도이온농도가 9.0이상으로 상승하는 주요 원인은 CSH계 시멘트 성분에 의한 수산화칼슘용액인 것으로 추정된다. 건설폐토석 내 높은 pH 농도는 어류의 생태에 독성을 유발하게 된다. 조사자료를 바탕으로 Visual Modflow Ver. 2009를 이용하여 지반 내 pH 농도의 확산범위를 분석하였다. 건설폐토석 내 높은 pH 농도는 시멘트 성분으로 인해 장기간 동안 존재할 수 있으므로 성토 초기에 양질의 화강풍화토와 혼합하여 pH를 조절하는 것이 필요하다.

폴리머 물질 첨가를 통한 중금속 오염 광미의 고형화 처리 (Addition of Polymeric Materials to Binders for Solidification of Heavy Metal Contaminated Mine Tailings)

  • 김태풍;민경원;이현철;서의영;이원섭
    • 산업기술연구
    • /
    • 제30권A호
    • /
    • pp.37-43
    • /
    • 2010
  • Polymeric materials in addition to Portland cement and hydrated limes were used to solidify heavy metal contaminated tailings from five abandoned metal mines in Korea. Mine tailings were mixed separately with Portland cement and hydrated lime at a concentration of 20-30 wt% and 6-9 wt%, respectively and Ethylene Vinyl Acetate(EVA) powder was added to each specimen at a ratio of 2.5 and 5.0 wt% to binders. Polymer-added and polymer-free solidified forms were evaluated for their appropriateness in accordance with the suggested test methods. Regardless of addition of polymeric materials, all solidified forms satisfy the uniaxial compressive strength(UCS) requirements(0.35MPa) for land reclamation and show remarkably reduced leaching concentrations of heavy metals such as As, Cd, Cu, Pb and Zn less than the toxicity criteria of Korean standard leaching test(KSLT). The addition of polymeric materials increased the UCS of solidified forms to improve a long-term stability of solidified mine tailings.

  • PDF

Leachability of lead, cadmium, and antimony in cement solidified waste in a silo-type radioactive waste disposal facility environment

  • Yulim Lee;Hyeongjin Byeon;Jaeyeong Park
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2889-2896
    • /
    • 2023
  • The waste acceptance criteria for heavy metals in mixed waste should be developed by reflecting the leaching behaviors that could highly depend on the repository design and environment surrounding the waste. The current standards widely used to evaluate the leaching characteristics of heavy metals would not be appropriate for the silo-type repository since they are developed for landfills, which are more common than a silo-type repository. This research aimed to explore the leaching behaviors of cementitious waste with Pb, Cd, and Sb metallic and oxide powders in an environment simulating a silo-type radioactive waste repository. The Toxicity Characteristic Leaching Procedure (TCLP) and the ANS 16.1 standard were employed with standard and two modified solutions: concrete-saturated deionized and underground water. The compositions and elemental distribution of leachates and specimens were analyzed using an inductively coupled plasma optical emission spectrometer (ICP-OES) and energy-dispersive X-ray spectroscopy combined with scanning electron microscopy (SEM-EDS). Lead and antimony demonstrated high leaching levels in the modified leaching solutions, while cadmium exhibited minimal leaching behavior and remained mainly within the cement matrix. The results emphasize the significance of understanding heavy metals' leaching behavior in the repository's geochemical environment, which could accelerate or mitigate the reaction.

Response of Odontoblast to the Bio-Calcium Phosphate Cement

  • Kim, Jin-Woo;Kim, Sung-Won;Kim, Gyoo-Cheon;Kim, Yong-Deok;Kim, Cheol-Hun;Kim, Bok-Joo;Kim, Uk-Kyu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제33권4호
    • /
    • pp.301-307
    • /
    • 2011
  • Purpose: If the tooth structure is damaged, then it is impossible to regenerate the tooth. The materials used to restore the tooth structure are not related to the composition of the tooth. The materials used to restore the structure can't replace the natural tooth because they just fill the defective structure. Calcium phosphate cement remineralizes the dentin and almost replaces the natural tooth, but there are some disadvantages. We conducted basic tests with Biomimetic CPC (Bio-CPC) to make sure of the possibility of the biomaterial to remineralize the defective tooth structure. Methods: In this study, the bioactivity and biocompatibility of Bio-CPC were evaluated for its potential value as the bio-material for regeneration of damaged tooth structure by conducting a cell toxicity assay (WST-1 assay), a cytokinesis-block micronucleus assay, a chromosomal aberration test, total RNA extraction and RT-PCR on MDPC-23 mouse odontoblast-like cells. Results: The in vitro cytotoxicity test showed that the Bio-CPC was fairly cytocompatible for the MDPC-23 mouse odontoblast-like cells. Conclusion: Bio-CPC has a possibility to be a new biomaterial and further study of Bio-CPC is needed.

Evaluation of the Performance of the PVA Fiber Reinforced Inorganic Binder and Industrial By-products Building Board

  • Park, Jong-Pil;Lee, Sang-Soo;Song, Ha-Young
    • 한국건축시공학회지
    • /
    • 제13권3호
    • /
    • pp.253-262
    • /
    • 2013
  • The test on the mix of PVA fiber of low carbon inorganic composite as a cement substitute found it to be satisfactory in terms of flexibility and stiffness. The result of the evaluation of the properties of low carbon inorganic panel revealed that the absorptivity was low at 8 to 9%, which is lower than the KS value of 25%. Also, the test on non-combustibility and gas toxicity found that these factors satisfied the decision criteria. In the test on heavy metals discharges, Pb, Cd, Cr6+, Hg, and As were not detected. Regarding far-Infrared emissivity and formaldehyde emission, the substitute was found to be harmless to the human body. Therefore, if the issue of shrinkage, which is a disadvantage of inorganic composites, is addressed, it is judged that it is possible to develop a low carbon inorganic composite panel with better performance.

Optimal Use of MSWI Bottom Ash in Concrete

  • Zhang, Tao;Zhao, Zengzeng
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권2호
    • /
    • pp.173-182
    • /
    • 2014
  • An experimental investigation was carried out to evaluate the mechanical properties of concrete mixtures in which coarse aggregate was partially (30, 50 or 70 %) replaced with pre-washed municipal solid waste incineration (MSWI) bottom ash. Results indicated that bottom ash reduced the compressive strength, elastic modulus, and levels of heavy metals in leachate when used as a replacement for gravel, and that the maximum amount of MSWI bottom ash in concrete should not exceed 50 %. To analyze the effect mechanism of bottom ash in concrete, the degree of hydration and the following pozzolanic reaction characterized by the pozzolanic activity index, and the porosity distribution in cement mortar. The study indicates that improved properties of concrete are not solely later strength gain and reduced levels of heavy metals in leachate but also the progression of pozzolanic reactions, where a dense structure contains a higher proportion of fine pores that are related to durability.

매립지 복토재로의 활용을 위한 하수슬러지 내 중금속의 고형화/안정화 (Solidification/Stabilization of Heavy Metals in Sewage Sludge Prior to Use as a Landfill Cover Material)

  • 박연진;신원식;최상준;이훈하
    • 대한환경공학회지
    • /
    • 제32권7호
    • /
    • pp.665-675
    • /
    • 2010
  • 본 연구에서는 하수슬러지를 매립지 복토재로 재활용하기 위해 래들슬래그, 시멘트, 인회석, 소석회를 첨가하여 하수 슬러지 내 중금속(Cd, Cu, Ni, Pb, Zn)의 용출을 평가하였다. 하수슬러지의 용출 평가는 EDTA (ethylenediaminetetraacetic acid) 추출법과 TCLP (Toxicity Characteristic Leaching Procedure)를 통해 이루어졌으며, 중금속 결합 기작은 연속추출(sequential extraction)을 통해 평가하였다. EDTA 용출 결과 하수슬러지에 래들슬래그/시멘트/소석회의 투입량이 증가할수록 하수슬러지 내 중금속의 용출이 감소하였다. 그러나 인회석을 투입했을 때는 중금속 용출의 감소 효과가 거의 나타나지 않았으며, 이는 EDTA가 인회석에 의한 중금속 고정화를 방해하였기 때문이다. TCLP 용출 결과 하수슬러지 내 슬래그, 시멘트 또는 소석회의 투입량이 증가하여 용출액의 pH가 7 이상일 때는 Cu의 용출 농도가 원하수슬러지의 용출농도보다 증가하는 것으로 나타났다. 그러나 인회석은 투입량이 증가할수록 중금속의 용출 농도가 감소하는 것으로 나타났다. 혼합 고화제를 투입한 하수슬러지의 중금속 용출 결과, 하수슬러지의 중량비 100%를 기준으로 래들슬래그 20%와 소석회 10%를 투입한 혼합물이 최적의 고화 혼합 비율이며, 이 때 EDTA 추출법과 TCLP로 용출한 중금속의 농도가 가장 낮게 나타났다. 이러한 결과는 하수슬러지 내 중금속 결합이 약한 결합인 exchangeable fraction과 carbonate fraction에서 강한 결합인 organic fraction으로 이동하였음을 연속추출(SM&T, formaly BCR)을 통해 확인할 수 있었다. 하수슬러지와 고화제를 최적의 비율로 혼합한 혼합물을 폐기물공정시험법으로 중금속 용출을 평가한 결과 Cu가 기준농도 이상으로 검출되었다. 그러나 TCLP에 따른 하수슬러지의 용출시험 결과 Ba, Cd, Cr, Pb의 항목에서 미국 환경보호청의 용출 기준을 만족하였다.