• Title/Summary/Keyword: cement stabilization

Search Result 138, Processing Time 0.028 seconds

Alkali-activated GGBS and enzyme on the swelling properties of sulfate bearing soil

  • Thomas, Ansu;Tripathia, R.K.;Yadu, L.K.
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • Use of cement in stabilizing the sulfate-bearing clay soils forms ettringite/ thaumasite in the presence of moisture leads to excessive swelling and causes damages to structures built on them. The development and use of non-traditional stabilisers such as alkali activated ground granulated blast-furnace slag (AGGBS) and enzyme for soil stabilisation is recommended because of its lower cost and the non detrimental effects on the environment. The objective of the study is to investigate the effectiveness of AGGBS and enzyme on improving the volume change properties of sulfate bearing soil as compared to ordinary Portland cement (OPC). The soil for present study has been collected from Tilda, Chhattisgarh, India and 5000 ppm of sodium sulfate has been added. Various dosages of the selected stabilizers have been used and the effect on plasticity index, differential swell index and swelling pressure has been evaluated. XRD, SEM and EDX were also done on the untreated and treated soil for identifying the mineralogical and microstructural changes. The tests results show that the AGGBS and enzyme treated soil reduces swelling and plasticity characteristics whereas OPC treated soil shows an increase in swelling behaviour. It is observed that the swell pressure of the OPC-treated sulfate bearing soil became 1.5 times higher than that of the OPC treated non-sulfate soil.

Environmentally Adaptive Stabilization of the Hazardous Heavy Metal Waste by Cementious Materials(I) (산업폐기물 중의 유해중금속의 환경친화적 안정화 처리(I))

  • 원종한;안태호;최광휘;최상흘;손진군;심광보
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.7
    • /
    • pp.680-686
    • /
    • 2002
  • The solidification/stabilization mechanism of each cementious material was investigated. It was found that when $C_3$S was hydrated , the Pb element could be transferred to the insoluble Ca[Pb(OH)$_3$.$H_2O$]$_2$and the Cr element to the CaCr $O_4$$H_2O$. The addition of heavy metal tends to delay the hydration until initial 7 days. The Pb element as also delayed the hydration and the Cr element was substituted for the ettringite. On the occasion of the hydration of $C_4$ $A_3$ $S^{S}$, the Pb and Cr ions were solidified/stabilized by the substitution into the ettringite and/or monosulfate. Leaching of the Pb, Cr and Zn elements in the solidified material was extremely little, indicating that heavy metals were effectively solidified/stabilized in the hydrated cementious materials. Solidification/stabilization of heavy metal ions in the industrial wastes such as the STS, BF and COREX sludge was investigated. In case of the mixing ratio of cement and slag was 3 : 7, leaching of hazardous heavy metal ions was very little, indications that the solidification and stabilization was very successful.l.

FEM-based modelling of stabilized fibrous peat by end-bearing cement deep mixing columns

  • Dehghanbanadaki, Ali;Motamedi, Shervin;Ahmad, Kamarudin
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.75-86
    • /
    • 2020
  • This study aims to simulate the stabilization process of fibrous peat samples using end-bearing Cement Deep Mixing (CDM) columns by three area improvement ratios of 13.1% (TS-2), 19.6% (TS-3) and 26.2% (TS-3). It also focuses on the determination of approximate stress distribution between CDM columns and untreated fibrous peat soil. First, fibrous peat samples were mechanically stabilized using CDM columns of different area improvement ratio. Further, the ultimate bearing capacity of a rectangular foundation rested on the stabilized peat was calculated in stress-controlled condition. Then, this process was simulated via a FEM-based model using Plaxis 3-D foundation and the numerical modelling results were compared with experimental findings. In the numerical modelling stage, the behaviour of fibrous peat was simulated based on hardening soil (HS) model and Mohr-Coulomb (MC) model, while embedded pile element was utilized for CDM columns. The results indicated that in case of untreated peat HS model could predict the behaviour of fibrous peat better than MC model. The comparison between experimental and numerical investigations showed that the stress distribution between soil (S) and CDM columns (C) were 81%C-19%S (TS-2), 83%C-17%S (TS-3) and 89%C-11%S (TS-4), respectively. This implies that when the area improvement ratio is increased, the share of the CDM columns from final load was increased. Finally, the calculated bearing capacity factors were compared with results on the account of empirical design methods.

A Study on the Admixture Stabilization of Domestic Coal Ashes as the Fill Material (성토재로서 석탄회의 안정제 혼합 효과에 관한 연구)

  • 박은영;김진만
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.37-50
    • /
    • 1995
  • Recently, the treatment of coal ashes produced from thermal electric power plants have been raised as a serious problem in according to the increasing of electric power demand in Korea. This paper deals with a re -use method of coal ash as a fill material. Two domestic coal ashes are mixed with cement and lime to improve the mechanical properties of coal ash. The mechanical properties such as compressive strength, compressive deformation, permeability and frost heaving property are investigated in according to the change of admixture rate, curing temperature and curing time. In this study, it is found coal ash (fly ash+bottom ash) and fly ash with 2%~3% cement can be used as a fill material, respectively. It is also found the frost heaving properties of coal ash is effectively improved by the mixture of 6%~9% cement.

  • PDF

A Study on the Characteristics of Alkali Silica Sol Grouting Material (알칼리성 실리카졸 지반주입재의 특성에 관한 연구)

  • Cho, Younghun;Kim, Chanki;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.4
    • /
    • pp.17-24
    • /
    • 2011
  • For the purpose of cut off and ground stabilization, water glass chemical grouting method using sodium silicate has problems of weakening durability and ground water pollution because leaching was conducted when the homogel is exposed to the ground water as time elapses. The purpose of this study is to identify the effect of alkali silica sol ground injection materials, it was compared with the sodium silicate ground injection materials using water glasses. For sodium silicate and alkali silica sol by mixing each case is divided into four different specimens were made and tested. The characteristic of alkali silica sol ground injection material was analyzed by unconfined compression test and environmental impact statement of ordinary portland cement and blast furnace slag cement. Alkali silica sol specimens were made mixing A-solution and B-solution in the proportion of one on one. Through this study, alkali silica sol ground injection mixing blast furnace slag cement has excellent strength and environment-friendly.

Characteristics of Desiccation on the Stabilized Layer in Waste Landfill (쓰레기 매립지에서 표층고화처리층의 건조수축특성)

  • 천병식;임종윤;최창현;차용혁
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.301-308
    • /
    • 1999
  • With the shortage of the land and NIMBY syndrome, it is issued recently that the capacity of waste-landfill site is needed though the decreasing tendency of waste landfill. From this point, the stability is the most essential problem in the landfill that will be constructed. Advanced design and construction are most important for that. In this paper, for the study of desiccation, dry-shrinkage crack from drying and chemical reaction in cement hydration, which is occurred when the surface layer stabilization method is applied in wast landfill, laboratory test of the ground and specimen according to the mixture ratio of stabilizer is performed. From the result, it is notified that the uni-axial strength increases with the stabilizer, but dry-shrinkage increases too, therefore, it is important and the goal of this study to find the optimal mixture ratio of each stabilizer. Analysis of variance for regression with acting variables is performed to find optimal mixture ratio of each stabilizer.

  • PDF

Construction of Environmentally Friendly Roadbed by Reinforecing Type Soil Solidification Agent (보강형 고화제를 이용한 친환경 도로노반조성 방안)

  • Koh, Yong-Kook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.667-671
    • /
    • 2004
  • The purpose of this paper is to study on the construction of environmentally friendly roadbed by reinforcing type soil solidification agent. The soil amendment agent used in this study is friendly to the environment, and has a function of soil-cement-agent solidification. The soil amendment agent was admixed with reinforced fiber material for enhancement of strength and durability of roadbed. The project of trial field test of roadbed construction with special reinforcing soil treatment agent was performed in Gyunggido on December 2003. A series of field and laboratory experiments including unconfined compressive strength, permeability were carried out to investigate the physical and mechanical characteristics of solidified roadbed treated by this reinforced solidifying agent. The results of this research showed that the roadbed using normal and poor soil could be efficiently constructed by treatment of this reinforcing type solidification agent admixed with fiber material.

  • PDF

A Study on Characteristics of Water Quality in Wastewater according to the Washing of Municipal Solid Waste Incinerator (MSWI) Ash

  • Byun, Mi-Young;Kim, Hyung-Seok;Ahn, Ji-Whan;Kim, Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.296-300
    • /
    • 2001
  • In order to recycle the incineration ash (bottom ash and fly ash) generated from the incineration of municipal waste for a cement material, salts as well as heavy metal should be removed by the stabilization treatment. Most of these heavy metal and over 80% of salts are removed by a washing as a pre-treatment. However, wastewater which is another pollutant is generated by a washing, then proper treatment should be developed. First the characteristics of incineration ashes collected from two domestic full-sized incinerators were investigated and removal rate of salts and heavy metals from them also studied. The wastewater quality was compared to the criteria of the regulation by analyzing the characteristics of generated wastewater during the washing of incineration ash as a condition of liquid/solid ratio. Also, we tried to used this experimental results for the basic data to develop proper processing technique of municipal waste.

  • PDF

Remediation of Heavy Metal Contaminated Sediments (중금속 오염 퇴적저니의 복원방안)

  • 배우근;이창수;홍종철;장석규;김성진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.10a
    • /
    • pp.34-38
    • /
    • 1999
  • This paper investigated remediation options for contaminated sediments with heavy metals. Twenty three sediment samples were taken from three different depths of 0.5m, 1.5m and 2.5m. The concentration of Heavy metals Cu, Pb, and Hg were measured. The concentration of copper far exceeded the Sediment Quality Guideline in U.S.A and Interim Sediment Quality Guidelines in Canada. Therefore, remediation of the sediments is requried to protect the benthos. Two remediation options were suggested : dredging of the organic sediments as deep as about 85cm followed by surface covers with clean soil, and in-situ stabilization of tile sediments using lime or cement followed by surface cover with clean soil.

  • PDF

Experimental and analytical investigation of the shear behavior of strain hardening cementitious composites

  • Georgiou, Antroula V.;Pantazopoulou, Stavroula J.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.19-30
    • /
    • 2019
  • The mechanical behavior of Fiber Reinforced Cementitious Composites (FRCC) under direct shear is studied through experiment and analytical simulation. The cementitious composite considered contains 55% replacement of cement with fly ash and 2% (volume ratio) of short discontinuous synthetic fibers (in the form of mass reinforcement, comprising PVA - Polyvinyl Alcohol fibers). This class of cementitious materials exhibits ductility under tension with the formation of multiple fine cracks and significant delay of crack stabilization (i.e., localization of cracking at a single location). One of the behavioral parameters that concern structural design is the shear strength of this new type of fiber reinforced composites. This aspect was studied in the present work with the use of Push-off tests. The shear strength is then compared to the materials' tensile and splitting strength values.