• Title/Summary/Keyword: cement stabilization

Search Result 138, Processing Time 0.023 seconds

Characteristic studies of coal power plants ash sample and monitoring of PM 2.5

  • Thriveni., T;Ramakrishna., CH;Nam, Seong Young;kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.45-56
    • /
    • 2017
  • Coal power plants produce electricity for the nation's power grid, but they also produce more hazardous air emissions than any other industrial pollution sources. The quantity is staggering, over 386,000 tons of 84 separate hazardous air pollutants spew from over 400 plants in 46 states. In South Korea also, annual coal ash generation from coal-fired power plants were about 6 million tons in 2015. Pollutants containing particulate matter 10, 2.5 (PM10, PM2.5), heavy metals and dioxins from coal-fired power plant. The emissions threaten the health of people who live near these power plants, as well as those who live hundreds of miles away. These pollutants that have long-term impacts on the environment because they accumulate in soil, water and animals. The present study is to investigate the physical and chemical characteristics of coal-fired power plant fly ash and bottom ash contains particulate matter, whose particulate sizes are lower than $PM_{10}$ and $PM_{2.5}$ and heavy metals. There are wide commercial technologies were available for monitoring the PM 2.5 and ultra-fine particles, among those carbonation technology is a good tool for stabilizing the alkaline waste materials. We collected the coal ash samples from different coal power plants and the chemical composition of coal fly ash was characterized by XRF. In the present laboratory research approach reveals that potential application of carbonation technology for particulate matter $PM_{10}$, $PM_{2.5}$ and stabilization of heavy metals. The significance of this emerging carbonation technology was improving the chemical and physical properties of fly ash and bottom ash samples can facilitate wide re use in construction applications.

Fabrication of the Cement for the Solidification of the Toxic Waste using Waste Concrete Powder (폐콘크리트 미분말을 이용한 유해 폐기물 고화용 시멘트의 제조)

  • Kim, In-Seob;Won, Jong-Han;Choi, Kwang-Hui;Choi, Sang-Hul;Lee, Jong-Gyu;Sohn, Jin-Gun;Shim, Kwang-Bo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1133-1137
    • /
    • 2002
  • The cement for solidification of the toxic waste was fabricated using a mixture of the waste concrete powder and blast furnace slag in the ratio of 1:1 and its hydrate morphology and compressive strength of the sample were evaluated in order to apply to the solidification of the COREX sludge. The X-ray diffraction analysis of the sample which prepared by the addition of 10% Portland cement and hemihydrate showed the presence of $Ca(OH)_2$, ettringite, gel-phase and C-S-H hydrate. Compressive strength of the sample exhibited enough high to use as a solidification cement. The strength of the sample was over 140 kgf/$m^2$ in 7 days in case of solidification of the COREX sludge and the sample possess sufficient morphology for the solidification and stabilization of the waste sludge.

Performance evaluation of β-glucan treated lean clay and efficacy of its choice as a sustainable alternative for ground improvement

  • Kumara, S. Anandha;Sujatha, Evangelin Ramani
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.413-422
    • /
    • 2020
  • The choice of eco-friendly materials for ground improvement is a necessary way forward for sustainable development. Adapting naturally available biopolymers will render the process of soil stabilization carbon neutral. An attempt has been made to use β-glucan, a natural biopolymer for the stabilization of lean clay as a sustainable alternative with specific emphasis on comprehending the effect of confining stresses on lean clay through triaxial compression tests. A sequence of laboratory experiments was performed to examine the various physical and mechanical characteristics of β-glucan treated soil (BGTS). Micro-analysis through micrographs were used to understand the strengthening mechanism. Results of the study show that the deviatoric stress of 2% BGTS is 12 times higher than untreated soil (UTS). The micrographs from Scanning Electron Microscopy (SEM) and the results of the Nitrogen-based Brunauer Emmett Teller (N2-BET) analysis confirm the formation of new cementitious fibres and hydrogels within the soil matrix that tends to weld soil particles and reduce the pore spaces leading to an increase in strength. Hydraulic conductivity (HC) and compressibility reduced significantly with the biopolymer content and curing period. Results emphases that β-glucan is an efficient and sustainable alternative to the traditional stabilizers like cement, lime or bitumen.

Effect of clay mineral types on the strength and microstructure properties of soft clay soils stabilized by epoxy resin

  • Hamidi, Salaheddin;Marandi, Seyed Morteza
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.729-738
    • /
    • 2018
  • Soft clay soils due to their various geotechnical problems, stabilized with different additives. Traditional additives such as cement and lime will not able to increase the soil strength properties significantly. So, it seems necessary to use new additives for increasing strength parameters of soft clay soils significantly. Among the new additives, epoxy resins have excellent physical and mechanical properties, low shrinkage, excellent resistance to chemicals and corrosive materials, etc. So, in this research, epoxy resin used for stabilization of soft clay soils. For comprehensive study, three clay soil samples with different PI and various clay mineral types were studied. A series of uniaxial tests, SEM and XRD analysis conducted on the samples. The results show that using epoxy resin increases the strength parameters such as UCS, elastic modulus and material toughness about 100 to 500 times which the increase was dependent on the type of clay minerals type in the soil. Also, In addition to water conservation, the best efficiency in the weakest and most sensitive soils is the prominent results of stabilization by epoxy resin which can be used in different climatic zones, especially in hot and dry and equatorial climate which will be faced with water scarcity.

Improving performance of soil stabilizer by scientific combining of industrial wastes

  • Yu, Hao;Huang, Xin;Ning, Jianguo;Li, Zhanguo;Zhao, Yongsheng
    • Geomechanics and Engineering
    • /
    • v.10 no.2
    • /
    • pp.247-256
    • /
    • 2016
  • In this paper, based on understanding the design theories on soil stabilization, a series of soil stabilizers were prepared with different kinds of industrial wastes such as calcined coal gangue (CCG), blast furnace slag (SS), steel slag (SL), carbide slag (CS), waste alkali liquor (JY), and phosphogypsum (PG). The results indicated that when the Portland cement (PC) proportion was lower than 20% in the stabilizer, for the soil sample selected from Wuhan (WT) and Beijing (BT), the unconfined compress strength (UCS) of the stabilized soil specimens could increase 4.8 times and 5.4 times respectively than that of the specimens stabilized only by PC; compared with the UCS of the specimen stabilized only by PC, the UCS of the specimen which was made from soil sample WT and stabilized by the stabilizer composed only by CCG, CS, and PG increased 1.5 times, and UCS of the specimen which was made from soil sample BT and stabilized by the stabilizer composed only by SS, JY, and PG increased 4.5 times.

Selection of the optimum mixture condition for stabilization of Songdo silty clay (송도 지역 해양성 점토 고화처리를 위한 최적배합 조건의 선정)

  • Kim, Jun-Young;Jang, Eui-Ryong;Chung, Choong-Ki;Lee, Yong-Jun;Jang, Soon-Ho;Choi, Jung-Yeul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.412-419
    • /
    • 2009
  • Large quantity of extra soils discharged from excavation site in Songdo area can be treated by hardening agents and utilized in surface stabilized layer overlying thick reclaimed soft soil deposit. Though surface layer stabilization method using cement or lime for very soft soils has been studied in recent years, but studies on moderately soft clayey silt has not been tried. The purpose of this research is to investigate optimum mixing condition for stabilizing Songdo marine soil with low plasiticity. The optimum mixing conditions of hardening agents with Songdo soil such as kind of agents, mixing ratio, initial water content and curing time are investigated by uniaxial compression test and laboratory vane test. The results indicate that strength increases with high mixing ratio and long curing time, while decreases drastically under certain water content before mixing. Finally, optimum mixing condition considering economic efficiency and workability with test results was proposed.

  • PDF

A study on the Effect of Calcium Chloride Admixture on strengths of Concrete (혼화제인 염화칼슘이 콘크리트 강도에 미치는 영향에 관한 연구)

  • Jun, Hyun-Woo;Lim, Chong-Kook
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.4
    • /
    • pp.2419-2425
    • /
    • 1971
  • In many cold weather concrete constructison jobs calcium chloride $CaCl_2$ can be used safely as an accelerating admixture. For producing satisfactory concrete during cold weather calcium chloride is used to develop the level of strength required in a shorter period by obtaining higher early strength, the resulting in crease in heat of hydration. In this paper, to get adequated data and information of the effect on strength of concrete in using calcium chloride as an accelerating admixture, Portland cement (Type I), High-early-strength cement(Type II) and Pozzolans cement with certain 1.5 percentage of calcium chloride by weight of the cement were tested. As the result of this experiment, followings were founded: 1. At the 1.5 percent of calcium chloride cement ratio, the early strength was accelerated to the highest level, and some 1.5 percent of calcium chloride cement ratio was suitable for the stabilization of the concrete structures. 2. For Some 50 percent of Water Cement ratio was suitable, making good Concrete in the Cold weather by admixture of Calicum Chloide. 3. The concrete of Pozzorans cement in early strength was weak but that in later rised by degree. 4. As abtaining higher early strength the curing period can be reduced, but the finishing work should be done as early as possible.

  • PDF

A Fundamental Study on the Development of Soil Stabilization Materials for Soil Mixing Method using Vietnam Fly Ash and Blast Furnace Slag (베트남 플라이애시 및 고로슬래그를 활용한 지반혼합공법용 지반안정재 개발을 위한 기초연구)

  • Jae-Hyun, Park;Wan-Gyu, Yoo;Se-Gwan, Seo;Kwang-Wu, Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.111-121
    • /
    • 2022
  • It has been reported that current amount of coal ash remains almost 100 million tons and 5.85 million tons of blast furnace slag are generated annually in Vietnam. Vietnam government has encouraged the industries to increase the use of coal ash and blast furnace slag as construction materials as well as in cement production institutionally. However, limited can be applied in the construction field yet. Therefore, in this study, basic performance analysis on five different kinds of fly ash from Vietnam was conducted. In addition, the performances of blast furnace slags generated in Vietnam and Korea were compared and evaluated. Soil stabilizer compressive strength test and solidified soil unconfined compressive strength test were conducted as the basic data for the development of soil stabilizer applied to the soil mixing method using fly ash and blast furnace slag generated in Vietnam. The results showed that the Vietnamese fly ash and blast furnace slag can be used as the raw materials for soil stabilization and improvement.

Properties of Modified Belite Cement with the Content of Clinker Minerals (클링커 광물 함량 변화시 Modified belite Cement의 특성)

  • 최연묵;이양수;김남호;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.479-485
    • /
    • 1998
  • Raw mateials such as limestone quartzite bauxite and anhydrite were used in the production of mod-ified beloite cement. Two kinds of clinker were synthesized with relatively higher content of $C_2S$ than that of $C_4A_3{\={S}}$ Concerning $C_2S$ the main mineral component borax ($Na_2O\;2B_2O_3\;10H_2O$) was added to stimu-late hydraulic reactivity and this would be possible by stabilizing ${\alpha}'-C_2S$ at room temperature. We had in-tended to compare burning and hydraulic characteristics of clinkers with one another by varying the amount of borax addition and to study the appropriate amount of anhydrite addition needed in the strengthening of cement during hydration. It was concluded that the effective amount of borax addition ne-eded for stabilization of ${\alpha}'-C_2S$ was 5 wt% in 60wt% $C_2S$ inclusive clinker and adding anhydrite in the ra-tio of 1.3 of $SO_3/Al_3O_3$ was appropriate in the production of cement by this clinker. Only ettringite was seen to contribute to the strength without additives but C-S-H was found to form along with ettringite with the addition of borax in the initial stage of hydration.

  • PDF

CHARACTERIZATION AND STABILIZATION OF WASTE DUSTS FROM SHREDDED AUTOMOBILES INDUSTRIES

  • Takashi, Furuyama;Abel, Bissombolo;Sukeyuki, Mori;Masamichi, Hata;Yoshitsugu, Koga;Tetsuo, Ikejiri
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.699-704
    • /
    • 2001
  • Until recently, disposal to landfill has been the most convenient way to deal with the increasing amount of residues the shredding industries produce. But the shortage of such disposal sites and the risk that liquid drained from these waste dusts may pollute ground water have increased the environmental pressures to find more effective solutions. The present study is an alternative approach that suggests identifying waste dusts characteristics and selecting an appropriate binder for hazardous materials to reduce the amount of contaminants (mainly lead) that were leaking into the soil. Investigations on the characteristics of automobiles waste dusts show that these materials are composed mainly of cottons and sponge like substances, plastics, rubber, glasses and gravel, metals, and electric wires. Besides, the percentage in weight of organic (inflammable) materials is about 70% and the lead contamination, which has not a ionic but a particulate nature, is particularly remarkable in cottons and sponge like materials. Binding additives such as K-20 and sodium carbonate were not effective but the addition of 5 % of cement (in weight of the investigated sample) followed by a 3-minute stirring and a 4-hour storage could drastically reduce the run off of lead below the maximum authorized level. No addition of water was necessary in this method.

  • PDF