• Title/Summary/Keyword: cement products

Search Result 533, Processing Time 0.029 seconds

Influence of Admixtures on Strengths and Freezing and Thawing Resistance of Cement Mortar for Precast Products (혼화재료가 공장제품용 시멘트 모르타르의 강도 및 동결융해 저항성에 미치는 영향)

  • 한천구;신병철;김기철;이상태
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.11-19
    • /
    • 2000
  • It has been reported that few manufacturers of cement mortar for precast products use chemical and mineral admixture due to the absense of restrictions related to the application of admixture and the poor manufacturing facilities. Therefore, this paper is intended to contribute to the improvement of quality by investigating the properties of cement mortar for precast products using fly ash, blast furnace slag and AE water reducing agent. According to the test results. it was found that the cement mortar products using fly ash and AE water-reducing agent had better qualities than those of ordinary portland cement.

Efflorescence Test Evaluation of Concrete Brick and Hollow Concrete Block Products (콘크리트 벽돌 및 속 빈 콘크리트 블록 제품의 백화시험 평가)

  • Lee, Sang-Hyun;Ki, Jun-Do;Cho, Hong-Bum;Kim, Young-Sun;Jeon, Hyun-Soo;Moon, Hyung-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.207-208
    • /
    • 2023
  • Concrete bricks and hollow concrete block products manufactured using ordinary portland cement react with salt and carbon dioxide absorbed from the soil and atmosphere in the use environment, causing contamination such as efflorescence. This is due to the reaction between calcium hydroxide, a cement hydration product, and carbon dioxide, producing and eluting calcium carbonate. This study was a preliminary study to compare and evaluate the reduction of efflorescence in concrete bricks and hollow concrete block products manufactured using carbon dioxide reaction hardening cement. The purpose was to evaluate the efflorescence occurrence in products using ordinary Portland cement.

  • PDF

A Study on the Correlation between Heavy Metal Content of Cement Products and Waste Used in Cement Industry (시멘트 산업에 투입되는 폐기물과 시멘트 제품의 중금속 함유량과의 상관관계 분석연구)

  • Kim, Yong-Jun;Um, Nam-Il;Kim, Woo-Il;Lee, Young-Kee;Kim, Ki-Heon
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.721-730
    • /
    • 2018
  • We investigated the effects of heavy metals in cement in the last 3 years and the amount of waste in the cement manufacturing process. The result shows that the average $Cr^{6+}$ content in cement products is controlled at 10 mg/kg. Cu and Pb have lower detection tendency in white cement than in ordinary portland cement. In addition, heavy metals such as Cd show a certain level of detection regardless of the input wastes. Copper slag and phosphate gypsum are the main influencing factors on the heavy metals in cement products. In auxiliary fuels, plastics waste and wood waste are considered to affect heavy metals in cement products. Alternative raw materials are considered to be affected by the alternative raw materials managed as byproducts. In the case of supplementary fuels, auxiliary fuels managed as waste instead of auxiliary fuels managed as byproducts affect the heavy metals in cement. This study examined the input amount without considering the heavy metals in each waste. Therefore, the result may vary in different situations, and further research must be conducted to supplement the findings. However, if the heavy-metal contents in the waste are constant, it can be used as a reference material for the control of heavy metals in cement products.

Microstructural properties of hardened cement paste blended with coal fly ash, sugar mill lime sludge and rice hull ash

  • Opiso, Einstine M.;Sato, Tsutomu;Otake, Tsubasa
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.289-301
    • /
    • 2017
  • The synergistic interactions of supplementary cementitious materials (SCMs) with ordinary portland cement (OPC) in multi-blended systems could enhance the mechanical and durability properties of concrete and increase the amount of cement that can be replaced. In this study, the characteristics of the hydration products as well as paste microstructure of blended cement containing 20% coal fly ash, 10% rice hull ash and 10% sugar mill lime sludge in quaternary blended system was investigated. Portlandite content, hydration products, compressive strength, pore size distribution and microstructural architecture of hydrated blended cement pastes were examined. The quaternary blended cement paste showed lower compressive strength, reduced amount of Portlandite phases, and higher porosity compared to plain hardened cement paste. The interaction of SCMs with OPC influenced the hydration products, resulting to the formation of ettringite and monocarboaluminate phases. The blended cement paste also showed extensive calcium silicate hydrates and calcium aluminate silicate hydrates but unrefined compared to plain cement paste. In overall, the expected synergistic reaction was significantly hindered due to the low quality of supplementary cementitious materials used. Hence, pre-treatments of SCMs must be considered to enhance their reactivity as good quality SCMs can become limited in the future.

Application of Precast Concrete Products of Non-Sintered Cement Mortar based on Industrial by-Products (산업부산물을 이용한 비소성 시멘트 모르타르의 프리캐스트콘크리트 제품 적용성 평가)

  • Na, Hyeong-Won;Moon, Kyoung-Ju;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • This study aimed to develop non-sintered cement that could replace portland cement which emits large amount of carbon dioxide during firing process. For this purpose, ground granulated blast furnace slag, type c fly ash and slaked lime were used. In addition, through the experimental results, the characteristics of the non-sintered cement binders according to the mixing ratios will be identified, and the utilization plans for the precast concrete products will be presented. In this experiment, non-sintered cement binders using industrial by-products were prepared to compare the flexural strength and compressive strength of each of the 3, 7 and 28 days. As a result, the results satisfy the KS of the target product proposed in this study. Therefore, this study presents the possibility of using precast concrete products by developing non-sintered cement binders using industrial by-products.

Microscopic Characterization of Cement Composites with Carbon Nanotubes (탄소나노튜브가 첨가된 시멘트복합체의 미시적특성분석)

  • Kim, Young-Min;Lee, Gun Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.176-177
    • /
    • 2019
  • As a result of the Rietveld analysis to determine the effect of carbon nanotubes on the hydration products of cement composites, the quantitative difference of hydration products according to the addition rate of carbon nanotubes was not significant. Ettringite, an early hydration product, was measured to be slightly higher than the planes with carbon nanotubes over all ages. Therefore, it seems that carbon nanotubes have no effect on the hydration production in cement paste.

  • PDF

Mechanical Properties of Cement Mortar: Development of Structure-Property Relationships

  • Ghebrab, Tewodros Tekeste;Soroushian, Parviz
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.3-10
    • /
    • 2011
  • Theoretical models for prediction of the mechanical properties of cement mortar are developed based on the morphology and interactions of cement hydration products, capillary pores and microcracks. The models account for intermolecular interactions involving the nano-scale calcium silicate hydrate (C-S-H) constituents of hydration products, and consider the effects of capillary pores as well as the microcracks within the hydrated cement paste and at the interfacial transition zone (ITZ). Cement mortar was modeled as a three-phase material composed of hydrated cement paste, fine aggregates and ITZ. The Hashin's bound model was used to predict the elastic modulus of mortar as a three-phase composite. Theoretical evaluation of fracture toughness indicated that the frictional pullout of fine aggregates makes major contribution to the fracture energy of cement mortar. Linear fracture mechanics principles were used to model the tensile strength of mortar. The predictions of theoretical models compared reasonably with empirical values.

Characterizations of High Early-Strength Type Shrinkage Reducing Cement and Calcium Sulfo-aluminate by Using Industrial Wastes

  • Lee, Keon-Ho;Nam, Seong-Young;Min, Seung-Eui;Lee, Hyoung-Woo;Han, Choon;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.215-221
    • /
    • 2016
  • In this study, the utilization of the by-products of various industries was examined using raw materials of CSA high-functional cement such as coal bottom ash, red mud, phosphate gypsum, etc. Technology to improve energy efficiency and reduce $CO_2$ was developed as part of the manufacturing process; this technology included lower temperature sintering ($150{\sim}200^{\circ}C$) than is used in the OPC cement manufacturing process, replacement of CSA cement with the main raw material bauxite, and a determination of the optimum mix condition. In order to develop CSA cement, a manufacturing system was established in the Danyang plant of the HANIL Cement Co. Ltd., in Korea. About 4,200 tons of low purity expansion agent CSA cement (about 16%) and about 850 tons of the lime-based expansion agent dead burned lime (about 8%) were produced at a rate of 60 tons per hour at the HANIL Cement rotary kiln. To improve the OPC cement properties, samples of 10%, 13%, and 16% of CSA cement were mixed with the OPC cement and the compressive strength and length variation rate of the green cement were examined. When green cement was mixed with each ratio of CSA cement and OPC cement, the compressive strength was improved by about 30% and the expansibility of the green cement was also improved. When green cement was mixed with 16% of CSA cement, the compressive strength was excellent compared with that of OPC cement. Therefore, this study indicates the possibility of a practical use of low-cost CSA cement employing industrial wastes only.

Influences of Grading and Grade Shape in Aggregates on the Strength and Absorption of Cement Mortar Products (골재의 입도 및 입형이 제품용 시멘트 모르타르의 강도 및 흡수율에 미치는 영향)

  • 한천구;신병철;김기철;이상태
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.45-52
    • /
    • 2000
  • The quality of cement mortar products largely depends on various work conditions, specially on the grading and grade shape of aggregates. However, the effect of grading and grade shape on the quality is not considered by both KS codes and production processes, resulting in the increase of the possibility of quality degradation. The objective of this study was to investigate the effect of grading and grade shape on the strength and absorption characteristics of cement mortar products. Flexural and compressive strength increased with the increase of fineness modulus and W/C. The strength increase was measured larger with river sand than with crushed sand. Absorption tended to decrease with the increase of fineness modulus and W/C, but did not affected by the source of sand.