• Title/Summary/Keyword: cement production

Search Result 397, Processing Time 0.03 seconds

An Experiment on Bond Behaviours of Reinforcements Embedded in Geopolymer Concrete Using Direct Pull-out Test (직접 인발 시험을 이용한 지오폴리머 콘크리트의 부착 특성 실험)

  • Kim, Jee-Sang;Park, Jong-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.454-462
    • /
    • 2016
  • Geopolymer concrete is a new class of construction materials that has emerged as an alternative to ordinary Portland cement concrete to reduce the emission of $CO_2$ in the production of concrete. Many researches have been carried out on material developments of geopolymer concrete, however a few studies have been reported on the structural use of them. This paper presents an experiment on the bond behaviors of reinforcements embedded in fly ash based geopolymer concrete. The development lengths of reinforcement for various compressive strength levels of geopolymer concrete, 20, 30 and 40 MPa, and reinforcement diameters, 10, 16 and 25 mm, are investigated. Total 27 specimens were manufactured and pull-out test according to EN 10080 was applied to measure the bond strength and slips between concrete and reinforcements. As the compressive strength levels of geopolymer concrete increase, the bond strength between geopolymer concrete and reinforcement increase. The bond strengths decrease as the diameters of reinforcements increase, which is similar in normal concrete. Also, an estimation equation for the basic development length of reinforcement embedded in geopolymer concrete is proposed based on the experimental results in this study.

Ability of the Natural Abrasives Recovered from Sludge (재활용 천연광물 연마재의 연마성능)

  • Cho, Sung-Baek;Seo, Myeong-Deok;Cho, Keon-Joon;Lee, Su-Jeong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.353-358
    • /
    • 2009
  • The ability of natural abrasives which were recovered from CRT glass polishing process was evaluated. Comparing the center line average roughness values of a glass polished with new pumice (Ra = $0.039{\mu}m$) and with new garnet (Ra = $0.031{\mu}m$), the glass surface polished with the recycled pumice and the garnet had less pits on the surface with smaller Ra values (Ra = $0.025{\mu}m$ for recycled pumice and Ra = 0.029 for recycled garnet). Recycled rouge contains amorphous glass fragments so that it should be used as a cement replacement rather than recycle into an abrasive. Nnatural abrasives, pumice and garnet powder, which are used in CRT glass polishing process can be recycled into abrasives so that it can help to minimize costs and environmental impact from the production of abrasives and the disposal of waste sludge.

Effect of Fiber Addition for Improving the Properties of Lightweight Foamed Concrete (경량 기포콘크리트의 성능향상에 대한 섬유혼입의 영향)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.383-389
    • /
    • 2015
  • The objective of this study is to develop mixture proportioning approach of crack controlled lightweight foamed concrete without using high-pressure steam curing processes, as an alternative to autoclaved lightweight concrete blocks (class 0.6 specified in KS). To control thermal cracks owing to hydration heat of cementitious materials, 30% ground granulated blast-furnace slag (GGBS) was used as a partial replacement of ordinary portland cement (OPC). Furthermore, polyvinyl alcohol (PVA) and polyamid (PA) fibers were added to improve the crack resistance of foamed concrete. The use of 30% GGBS reduced the peak value of hydration production rate measured from isothermal tests by 28% and the peak temperature of foamed concrete measured from semi-adiabatic hydration tests by 9%. Considering the compressive strength development, internal void structure, and flexural strength of the lightweight foamed concrete, the optimum addition amount of PVA or PA fibers could be recommended to be $0.6kg/m^3$, although PA fiber slightly preferred to PVA fiber in enhancing the flexural strength of foamed concrete.

Evaluation of PLA Fiber Dissolution in Cement Paste and Geopolymer (시멘트 페이스트 및 지오폴리머 내의 PLA 섬유의 용해성 평가)

  • Kim, Joo-Hyung;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.204-211
    • /
    • 2020
  • Poly-Lactic Acid(PLA) fiber is an eco-friendly material and is biodegradable, so it can be utilized for manufacturing porous construction materia ls with interna l pore connection. In this study, domestic PLA fiber products(0.5mm india meter, 1.0mm in length, 10mm in length) were tested for melting at high temperatures and high alkality, and they were incorporated with FA-based geopolymer. Compressive strength was obtained through high temperature curing and alkali activator, however the complete melting of the PLA fiber was not ensured. The previous study handling PLA fiber with 0.003mm in diameter was completely dissolved, but 0.5mm and 1.0mm in diameter showed 42.5% and 33.3% of dissolution ratio, respectively. In addition, the increasing fiber volume led floating fibers during curing, which had a negative effect on its workability and solubility. Although the properties of PLA fiber may vary depending on the raw materials and production conditions, PLA fiber with 0.1mm or less diameter is recommended for porous construction material.

Recycling System and Recycling Strategy for End of Life Vehicles in Korea (변혁기(變革期)의 한국(韓國) 자동차(自動車)리싸이클링시스템과 발전과제(發展課題))

  • Oh, Jae-Hyun;Kim, Joon-Soo;Moon, Suk-Min;Min, Ji-Won
    • Resources Recycling
    • /
    • v.20 no.2
    • /
    • pp.16-29
    • /
    • 2011
  • The Korea auto industry has developed remarkedly over the past 40 years and ranked up to 5th vehicles production nation in the world. In 2009 alone, Korea produced 3.5million vehicles and number of vehicles registered surpassed the seventeen million. On the other hand, 711 thousand ELV(End of Life Vehicles) were scrapped and used cars more than 265 thousand were exported. In the year 2009, 568 thousand tons of iron, 46 thousand tons of aluminum and 7 thousand tons of copper were recovered from ELV in Korea. Recycling ratio of ELV is approaching 95% by using ASR(Automobile Shredding Residue) as a fuel at cement kiln. Korea has enacted the automobile recycling law in 2007 and enforced it from January 2009, actually. However, the law has not been managed smoothly due to delays in the construction of infrastructure and the existence of a hostile monitoring system. In this regard, a revision and supplement program focused on recycling fee on the automobile recycling law is running under the ministry of environment now. Here, a recycling model for enhancing ELV recycling is suggested.

Experimental investigation on the effect of cementitious materials on fresh and mechanical properties of self-consolidating concrete

  • Shariati, Mahdi;Rafie, Shervin;Zandi, Yousef;Fooladvand, Rouhollah;Gharehaghaj, Behnam;Mehrabi, Peyman;Shariat, Ali;Trung, Nguyen Thoi;Salih, Musab N.A.;Poi-Ngian, Shek
    • Advances in concrete construction
    • /
    • v.8 no.3
    • /
    • pp.225-237
    • /
    • 2019
  • Although applying self-consolidating concrete (SCC) in many modern structures is an inevitable fact, the high consumption of cement in its mixing designs has led to increased production costs and adverse environmental effects. In order to find economically viable sources with environmentally friendly features, natural pozzolan pumice and blast furnace slag in 10-50% of replacement binary designs have been investigated for experiments on the properties of fresh concrete, mechanical properties, and durability. As a natural pozzolan, pumice does not require advanced equipment to prepare for consumption and only needs to be powdered. Pumice has been the main focus of this research because of simple preparation. Also to validate the results, in addition to the control specimens of each design, fly ash as a known powder has been evaluated. Moreover, ternary mixes of pumice and silica fume were investigated to enhance the obtained results of binary mixes. It was concluded that pumice and slag powders indicated favorable performance in the high percentage of replacement.

Compressive Strength of Concrete due to Moisture Conditions of Recycled Coarse Aggregates and Curing Conditions (순환 굵은 골재의 함수상태와 양생조건에 따른 콘크리트의 압축강도)

  • Moon, Kyoungtae;Park, Sangyeol;Kim, Seungeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.485-492
    • /
    • 2019
  • In this study, the effect of moisture conditions of recycled coarse aggregates on the compressive strength of concrete was evaluated with the water/binder ratios and the curing conditions. The saturated recycled aggregates seemed to have the negative effect on the strength development of concrete. This is the because of the decrease in bond strength between aggregate and cement paste due to the increase of surface water according to the high absorption of recycled aggregates. The effect of types and moisture conditions of aggregates according to the change of water/binder ratio was similar. However, the curing conditions had a significant effect on the compressive strength of the concrete with the different types of aggregates. In the case of curing in air, the recycled aggregates with high absorption reduced the moisture required for hydration and increased the rate of vaporizing, and these result in interfering strength development. The moisture conditions of the recycled aggregates have a considerable effect on the compressive strength of the concrete, and it is necessary to control the moisture conditions of aggregates in the production of concrete with recycled coarse aggregate. And the control of the curing condition is very important for the concrete with recycled aggregate.

An efficient robust cost optimization procedure for rice husk ash concrete mix

  • Moulick, Kalyan K.;Bhattacharjya, Soumya;Ghosh, Saibal K.;Shiuly, Amit
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.433-444
    • /
    • 2019
  • As rice husk ash (RHA) is not produced in controlled manufacturing process like cement, its properties vary significantly even within the same lot. In fact, properties of Rice Husk Ash Based Concrete (RHABC) are largely dictated by uncertainty leading to huge deviations from their expected values. This paper proposes a Robust Cost Optimization (RCO) procedure for RHABC, which minimizes such unwanted deviation due to uncertainty and provides guarantee of achieving desired strength and workability with least possible cost. The RCO simultaneously minimizes cost of RHABC production and its deviation considering feasibility of attaining desired strength and workability in presence of uncertainty. RHA related properties have been modeled as uncertain-but-bounded type as associated probability density function is not available. Metamodeling technique is adopted in this work for generating explicit expressions of constraint functions required for formulation of RCO. In doing so, the Moving Least Squares Method is explored in place of conventional Least Square Method (LSM) to ensure accuracy of the RCO. The efficiency by the proposed MLSM based RCO is validated by experimental studies. The error by the LSM and accuracy by the MLSM predictions are clearly envisaged from the test results. The experimental results show good agreement with the proposed MLSM based RCO predicted mix properties. The present RCO procedure yields RHABC mixes which is almost insensitive to uncertainty (i.e., robust solution) with nominal deviation from experimental mean values. At the same time, desired reliability of satisfying the constraints is achieved with marginal increment in cost.

A Fundamental Study on the Development of Soil Stabilization Materials for Soil Mixing Method using Vietnam Fly Ash and Blast Furnace Slag (베트남 플라이애시 및 고로슬래그를 활용한 지반혼합공법용 지반안정재 개발을 위한 기초연구)

  • Jae-Hyun, Park;Wan-Gyu, Yoo;Se-Gwan, Seo;Kwang-Wu, Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.111-121
    • /
    • 2022
  • It has been reported that current amount of coal ash remains almost 100 million tons and 5.85 million tons of blast furnace slag are generated annually in Vietnam. Vietnam government has encouraged the industries to increase the use of coal ash and blast furnace slag as construction materials as well as in cement production institutionally. However, limited can be applied in the construction field yet. Therefore, in this study, basic performance analysis on five different kinds of fly ash from Vietnam was conducted. In addition, the performances of blast furnace slags generated in Vietnam and Korea were compared and evaluated. Soil stabilizer compressive strength test and solidified soil unconfined compressive strength test were conducted as the basic data for the development of soil stabilizer applied to the soil mixing method using fly ash and blast furnace slag generated in Vietnam. The results showed that the Vietnamese fly ash and blast furnace slag can be used as the raw materials for soil stabilization and improvement.

Mechanical and durability of geopolymer concrete containing fibers and recycled aggregate

  • Abdelaziz Yousuf, Mohamed;Orhan, Canpolat;Mukhallad M., Al-Mashhadani
    • Computers and Concrete
    • /
    • v.30 no.6
    • /
    • pp.421-432
    • /
    • 2022
  • Recently, the interminable ozone depletion and the global warming concerns has led to construction industries to seek for construction materials which are eco-friendly. Regarding this, Geopolymer Concrete (GPC) is getting great interest from researchers and scientists, since it can operate by-product waste to replace cement which can lead to the reduction of greenhouse gas emission through its production. Also, compared to ordinary concrete, geopolymer concrete belongs improved mechanical and durability properties. In spite of its positive properties, the practical use of geopolymer concrete is currently limited. This is primarily owing to the scarce structural, design and application knowledge. This study investigates the Mechanical and Durability of Geopolymer Concrete Containing Fibers and Recycled Aggregate. Mixtures of elastoplastic fiber reinforced geopolymer concrete with partial replacement of recycled coarse aggregate in different proportions of 10, 20, 30, and 40% with natural aggregate were fabricated. On the other hand, geopolymer concrete of 100% natural aggregate was prepared as a control specimen. To consider both strength and durability properties and to evaluate the combined effect of recycled coarse aggregate and elastoplastic fiber, an elastoplastic fiber with the ratio of 0.4% and 0.8% were incorporated. The highest compressive strength achieved was 35 MPa when the incorporation of recycled aggregates was 10% with the inclusion of 0.4% elastoplastic fiber. From the result, it was noticed that incorporation of 10% recycled aggregate with 0.8% of the elastoplastic fiber is the perfect combination that can give a GPC having enhanced tensile strength. When specimens exposed to freezing-thawing condition, the physical appearance, compressive strength, weight loss, and ultrasonic pulse velocity of the samples was investigated. In general, all specimens tested performed resistance to freezing thawing. the obtained results indicated that combination of recycled aggregate and elastoplastic fiber up to some extent could be achieved a geopolymer concrete that can replace conventional concrete.