• Title/Summary/Keyword: cement production

Search Result 393, Processing Time 0.028 seconds

Characteristics of high-performance concrete with nano size cement (나노 시멘트를 이용한 고강도 콘크리트의 특성)

  • Jo, Byung-Wan;Park, Jong-Bin;Choi, Hae-Yun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.13-16
    • /
    • 2005
  • Nanoscale materials are of great interest due to their unique optical, electrical and magnetic properties. Due to the recent amazing achievements in nano technology, new materials were developed. But these nano technology is not apply to the construction part in spite of exellent properties of nano size material. The purpose of this study is to apply to nano technology into building materials. To develop the high performance concrete, nano cement particles is prepared by mechanical method. In the results of this study, the nano silica powder increase effect according to increase of the mixing amount, appeared that compressive strength increased but is limit in increment. For the production of high-strength concrete, nano silica powder was suitable the binder ratio from 20$\%$. And, the compressive strength of concrete are especially dependent on the curing temperature.

  • PDF

Thermal insulation property according to pearlite addition ratio of non cement matrix using paper ash and polysilicon sludge (제지애시와 폴리실리콘 슬러지를 활용한 무시멘트 경화체의 펄라이트 첨가율에 따른 단열특성)

  • Shin, Jin-Hyun;Kim, Dae-Yeon;Lee, Dong-Hoon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.165-166
    • /
    • 2018
  • Researches for the development of renewable energy as a fuel substitute for global warming and depletion of petroleum resources are actively being carried out. Among them, the annual growth rate of PV generation is 20.73%, which is higher than other renewable energy sources. However, the production of 1 ton of polysilicon, which is known as a raw material for solar power generation panels, generates 2 tons of waste. As the demand for PV panels increases, the problem of the treatment of polysilicon sludge is attracting attention, and studies on the utilization of polysilicon sludge are needed. Therefore, in this study, the applicability of polysilicon sludge treated as industrial waste to the lightweight panel for architectural purposes was examined.

  • PDF

Analysis of Actual Labor and Productivity for Based Work Crew Standard of Cement Liquid Watertight Construction (시멘트 액체방수 공사의 작업조 기반 품셈을 위한 생산량 및 노무량 분석)

  • Ha, Gee-Joo;Choi, Min-Kwon;Yi, Dong-Ryul;Ha, Min-Su;Ha, Jae-Hoon;Kim, Oe-Gun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.171-174
    • /
    • 2009
  • The standard estimation system, used to estimate the predetermined cost of construction work, is measured by the standard and typical construction methods and field conditions. And the standard estimation system is applied to basic data for the measuring of construction cost, such as the consumed quantity of material, labor hours, and machinery cost. However it does not reflect sufficiently for the diversity and reality of constructions work Therefore, this study is recognized the necessity of new cost estimation models for the rational construction cost estimation. To improve estimation technique and construction ability, it was analyzed labor hours, production volume based on the work crew in construction work.

  • PDF

Bond strength of deformed steel bars embedded in geopolymer concrete

  • Barzan Omar, Mawlood;Ahmed Heidayet, Mohammad;Dillshad Khidhir, Bzeni
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.331-339
    • /
    • 2022
  • Geopolymer concrete (GPC) is one of the best substitute materials for conventional concrete in construction. The conventional concrete provided by Portland cement has a detrimental influence on the environment during its production. In this study, the bond strength, which is an important structural property, of deformed steel bars with slag-based GPC was measured. In accordance with the ASTM C234 procedure, bond strength was measured on 18 specimens of slag-based GPC with three sizes of steel bars and different embedded lengths. Two groups of GPC specimens with different compressive strengths, which were cured under ambient conditions, were tested. The results indicated that the bar diameter has a great effect on the bond strength, and the bond strength behavior of the slag-based GPC is comparable with that of conventional concrete. The ACI-318 Code for the bond strength of ordinary Portland cement concrete can be used conservatively to determine the bond strength of the GPC reinforced with deformed steel bars.

A Study on the Strength Recovery Performance Evaluation of Concrete replaced by CBS-Dust and FA (CBS-Dust와 FA를 치환한 콘크리트의 강도회복성능 평가)

  • Han, Soo-Hwan;Han, Jun-Hui;Hyun, Seung-Yong;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.231-232
    • /
    • 2021
  • This study intended to verify the alkali activation effect of concrete by replacing FA and CBS-Dust with cement to find out how to utilize CBS-Dust generated during cement production. Experiments result shows that air flow and liquidity can be secured when CBS-Dust is replaced by 5% in FA 20%, and that relatively high compressive strength is expressed in the initial age of 3 days and 7 days and long-term age of 91 days.

  • PDF

Use of the Spent Bleaching Earth from Palm Oil Industry in Non Fired Wall Tiles

  • Wangrakdiskul, Ubolrat;Khonkaew, Pimolwan;Wongchareonsin, Thanya
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.15-24
    • /
    • 2015
  • Currently, abundant wastes from the palm oil refining process have been generated which are hard to handle. Spent Bleaching Earth (SBE) is the solid waste from this process and leads the cost of elimination to the company. This study aims to utilize the SBE as the alternative material in the non-fired wall tiles. The main raw materials used in non-fired wall tiles consist of laterite soil, fluvial sand, and Portland cement. The experimental formulas have been conducted and divided into 3 groups by varying the percentage of the SBE in main raw materials. The specimens of material mixture have been produced by uniaxial pressing at 100 bars, dimensions in $50{\times}100{\times}8mm$. These specimens are sprayed with water and cured in the air for 7 days. After that, bending strength and water absorption test of these specimens has been performed. It can be concluded that the best formula with the percentage of laterite soil, fluvial sand, Portland cement, and SBE are 60.94%, 13.125%, 22.5%, and 3.435%, respectively. Its bending strength and %water absorption are 0.68 MPa and 5.64%. Material costs of specimen are approximately $0.00276 USD/100g. Furthermore, the comparison of curing period between 7 days and 30 days has been performed. The 30 days of curing period can improve the bending strength of the specimen, but there is no effect on water absorption.

Effect of addition of As-received IGCC slag in making geopolymer

  • Kim, Yootaek;Chae, Taesung
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.378-382
    • /
    • 2018
  • It is a known fact that the cement production is responsible for almost 5% of total worldwide $CO_2$ emission, the primary factor affecting global warming. Geopolymers are valuable as ordinary Portland cement (OPC) substitutes because geopolymers release 80% less $CO_2$ than OPC and have mechanical properties sufficiently similar to those of OPC. Therefore, geopolymers have proven attractive to eco-friendly construction industries. Geopolymers can be fabricated from aluminum silicate materials with alkali activators such as fly ash, blast furnace slag, and so on. Integrated gasification combined cycle (IGCC) slag has been used for fabricating geopolymers. In general, IGCC slag geopolymers are fabricated with finely ground and sieved (<128 mesh) IGCC slag. The grinding process of as-received IGCC slag is one of the main costs in geopolymer production. Therefore, the idea of using as-received IGCC slag (before grinding the IGCC slag) as aggregates in the geopolymer matrix was introduced to reduce production cost as well as to enhance compressive strength. As-received IGCC slag (0, 10, 20, 30, 40 wt%) was added in the geopolymer mixing process and the mixtures were compared. The compressive strength of geopolymers with an addition of 10 wt% as-received IGCC slag increased by 19.84% compared to that with no additional as-received IGCC slag and reached up to 41.20 MPa. The enhancement of compressive strength is caused by as-received IGCC slag acting as aggregates in the geopolymer matrix like aggregates in concrete. The density of geopolymers slightly increased to $2.1-2.2g/cm^3$ with increasing slag addition. Therefore, it is concluded that a small addition of as-received IGCC slag into the geopolymer can increase compressive strength and decrease the total cost of the product. Moreover, the direct use of as-received IGCC slag may contribute to environment protection by reducing process time and $CO_2$ emission.

Monitoring of air Pollution on the Premises of the Factory Sharrcem - L.L.C

  • Luzha, Ibush;Shabani, Milazim;Baftiu, Naim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.214-222
    • /
    • 2022
  • In these proceedings, we will address the problem of air pollution on the premises of the Cement factory SHARRCEM L.L.C. in Hani Elezit in the Republic of Kosovo respectively around the clinker cooler, rotary kiln, and raw material mill. By air pollution, we mean the introduction of chemicals, particles, or other harmful materials into the atmosphere which in one way or another causing damage to the development of plants and organisms. Air pollution occurs when certain substances are released into the air, which depending on the quantitative level, can be harmful to human health, animals, and the environment in general. The analysis of air shows the influence of the extractive and processing industry on the chemical composition of air. Parameters analyzed though under control such as the case of carbon dioxide, due to the increasing production capacity of cement, the production of hundreds of thousands of cubic meters of CO2 gas made CO2 production a concern. With the purchase of the latest technology by the SHARCEM Factory in Hani Elezit, the amount of air pollution has been reduced and the allowed parameters of environmental pollution have been kept under control. Air pollutants are introduced into the atmosphere from various sources which change the composition of the atmosphere and affect the biotic environment.The concentration of air pollutants depends not only on the quantities that are emitted from the sources of air pollution but also on the ability of the atmosphere to absorb or disperse these emissions. Sources of air pollutants include vehicles, industry, indoor sources, and natural resources. There are some natural pollutants, such as natural fog, particles from volcanic eruptions, pollen grains, bacteria, and so on.

Effects of Accelerated Curing on the Strength of Mortar Using Briquette Ash. (촉진양생(促進養生)이 연탄재를 사용(使用)한 Mortar의 강도(强度)에 미치는 영향(影響))

  • Kim, Seong Wan;Kang, Sin Up;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.2
    • /
    • pp.185-194
    • /
    • 1981
  • This study was carried out to determine the effect of accelerated curing on the strength of standard sand mortar and briquette ash mortar. The standard sand mortars and the briquette ash mortars made by mixture of the standard sand:cement and the briquette ash:cement at the ratio of 2 : 1, 3: 1 and 4 : 1, respectively, were cured at 4 different temperature of $20^{\circ}C$, $60^{\circ}C$, $80^{\circ}C$ and $100^{\circ}C$. The compression and tensil strength of mortars were measured at ${\sigma}_3$, ${\sigma}_7$, ${\sigma}_28$. The results obtained are summarized as follows; 1. At each age of curing and each curing temperature, the compression and tensile strength of the mortars made by the mixture of cement and standard sand was significantly higher than that of the mortars made by the mixture of cement and briquette ash. But the increasing rate of strength in compression and tension was significantly higher at the mortars of cement and briquette ash than those of cement and standard sand. 2. The strength of mortars which showed lower strength than Korean Standard at ordinary curing temperature was significantly increased and showed higher value than Korean Standard by the accelerated curing at high temperature. The increasing rate of strength by the accelerated curing was higher at the mortars containing less amount of cement than those containing more cement. The hardening of the mortars containing less amount of cement was significantly promoted by the accelerated curing in high temperature. 3. When the briquette ash was substituted for the materials of cement mortar, decline of the mortar strength is. unavoidable. But the enhancement of the mortar strength is still expected by the experimental results that the strength of cement-briquette ash mortar showed an increase of 137.6% by the accelerated curing at $60^{\circ}C$, 164.1% at $80^{\circ}C$ C and 183.8% at $100^{\circ}C$, respectively, compared with the strength of mortar cured at $20^{\circ}C$ for 28 days. 4. As the strength of cement briquette mortar is lower than that of cement standard sand mortar, the cement briquette ash mortar is expected to be increased in strength by the accelerated curing at high temperature. The cement briquette mortar is expected to be utilized to the production of secondary mortar goods or the constructions which need low strength of mortar.

  • PDF

Energy Efficiency Improvements in the Korean Industry (한국 제조업의 에너지효율 향상평가)

  • Park, Hi Chun
    • Environmental and Resource Economics Review
    • /
    • v.10 no.2
    • /
    • pp.135-159
    • /
    • 2001
  • This study analyses the energy consumption increase by using a physical production index (PPI) based decomposition method. The energy efficiency of the Korean industry deteriorated to a large extent in the 1992 to 1997 period. This outcome, however, does not contradict the result of a previous study that the physical energy intensities (measured by energy use per production unit) decreased in four Korean energy intensive industries such as steel, cement, petrochemical and pulp and paper in the same period. Although the physical energy intensities in four industries considered decreased significantly, the energy efficiency of the Korean industry deteriorated because the increase in the value-added production was smaller than that in the physical production except for the steel industry. This outcome suggests that the reduction in the physical energy intensity alone will not result in reducing the economic energy intensity, thereby reducing the increase in the energy consumption of the Korean industry. Therefore, it necessitates to restructure the Korean industry towards a higher value-added production and to strengthen energy efficiency improvement efforts in the Korean industry. As the overinvestment in the energy intensive industries caused a deep price fall of Korean products and a reduction of the value added of the Korean industry and with it an increase in the economic energy intensity, a decrease in this intensity will highly depend on reducing the overcapacity in the energy intensive industries which was partly responsible for the currency and economic crisis of 1997.

  • PDF