• Title/Summary/Keyword: cement pastes

Search Result 160, Processing Time 0.026 seconds

Setting Time Evaluation on Cement Paste with Retarder Using Non-Destructive Measurements (비파괴 측정법을 이용한 지연제 첨가 시멘트 페이스트의 응결 평가)

  • Ahn, Yu-Rhee;Jun, Yu-Bin;Yim, Hong Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.48-56
    • /
    • 2022
  • Controlling the setting time of cementitious materials is one of the most important factors in securing early-age performance of concrete structures. Recently, the use of retarding admixtures, which enable the inhibition of some hydration products to control the securing time due to average temperature rise is suggested. Although various non-destructive evaluation methods have been proposed to evaluate cement hydration and hardening of cement-based materials to overcome the limitations of Vicat needle test, experimental research is still required to use the non-destructive evaluation method with added retarding admixtures. In this study, measurements of electrical resistivity and ultrasonic wave velocity in early-aged cement pastes were performed according to the addition of retarding admixture(tartaric acid). The setting time of the cement pastes was evaluated by obtained rising time of the both non-destructive measurements. As a result, the possibility of evaluating the setting delay in cement pastes was confirmed through comparative analysis with the initial and final setting times by Vicat test. In addition, X-ray diffraction results at the rising time of electrical resistivity showed a key hydration product affecting the setting delay.

Influence of Chemical Activators on Cement-Fly ash Paste and Strength Development of Concrete

  • Song, Jong-Taek;Yun, Sung-Dae;Kim, Jae-Young;Lee, Chin-Yong
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.103-106
    • /
    • 2000
  • The effects of replacement level, curing method and chemical admixtures were investigated in the cement-fly ash paste. The strength of cement-fly ash paste is lower than that of controlled cement paste only and the differences increase with replacement level. However, in steam curing, strength of cement-fly ash pastes is improved, especially, at early ages. In order to improve early strength, the use of $Na_2SO_4$in cement-fly ash paste increases the quality of concrete. In addition, improvement of strength of concrete including 30% of fly ash can be obtained and achieves the highest strength compared to other concrete mixtures.

  • PDF

A Study on the Pore Structure of Hardened Alumina Cement Pste by Water Vapor Sorption ($H_2O$ 증착법에 의한 알루미나 시멘트 경화체의 기공구조 연구)

  • 임용무;장복기
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.273-278
    • /
    • 1993
  • Using water vapor (de)sorption isotherm, pore structure analyses were performed for hardened cement pastes by a combination of the "MP-method" for the micropores and the "corrected modelless method" for the wide pores. This work was carried out to investigate the pore structure and to understand the microstructural basis of alumina cement developing much higher strength than Portland cement. Alumina cement shows extremely low microporosity and its wide pores are also composed mainlyof pores with very small radii. And the pore structure analysis results are consistent with the high strength property of alumina cement.y of alumina cement.

  • PDF

Effect of Impurities Included in the Domestic Waste Phosphogypsum on Hydration of Portland Cement (국산 인산석고에 함유된 불순물들이 Portland Cement의 수경성에 미치는 영향)

  • 인식환;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.4
    • /
    • pp.237-246
    • /
    • 1981
  • The effects of impurities, included in the by-produced phosphogypsum from the dihydrate process, on the hydration of portland cement were studied. Six gypsums were adopted in this study; four different raw phosphogypsums from domestic fertilizer plants, a reprocessed phosphogypsum and a reagent grade pure gypsum. Cements with differing $SO_3$ content, were synthesized by grinding two different commercial clinkers and the above six gypsums together. The effects of the impurities were investigated by measuring the setting time, the non-evaporable water coatent, X-ray phase analysis of cement pastes and the compressive strength of cement mortar specimens. It was found that the soluble $P_2O_5$ known as one of injurious impurities on the hydration of portland cement, included in the demestic raw phosghoypsum cxneedigply by far the specified amounts of the Korean Industrial Standards (L9005), and retarded the setting time severely, thus the strength development of cement was delayed at the earlier stage of hydration.

  • PDF

Influence of Chemical Admixtures on Flyahe Paste and Concrete (플라이애쉬 페이스트 및 콘크리트에 화학혼화제가 미치는 영향)

  • 이진용;최수홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.77-82
    • /
    • 1998
  • It was investigated to evaluate the characteristics of cement-flyash paste affected the replacement level, curing method and chemical admixtures. The strength of cement-flyash paste was lower than that of cement paste only and the differences increased with increasing the replacement level. However, in steam curing, the strength of cement-flyash pastes was improved and specially, the early strength was effectively increased. In order to improve the early strength, the use of $Na_2SO_4$ in cement-flyash paste increased the quality of concrete. In addition, the strength of concrete including 30% of fly ash has improved and obtained the highest strength compared to other concrete mix.

  • PDF

Synthesis of Calcium sulfoaluminate Usng Industrial By-products and Wastes (산업 부산물을 이용한 칼슘설포알루미네이트의 합성)

  • 문정호;이범재;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.888-893
    • /
    • 1998
  • Calcium sulfoaluminate, $C_4$A$_3$$\bar{S}$, was prepared for reutilizing industrial by-products, such as II-CaSO$_4$, Al(OH), CaF$_2$ and cement sludge wastes. Mixed powder was fired at 1,15$0^{\circ}C$. $C_4$A$_3$$\bar{S}$ clinkers fired at 1,15$0^{\circ}C$ were analyzed by SEM and XRD. Also were added in cement paste and mortar and characterized as setting time, flow values and compressive strength. $C_4$A$_3$$\bar{S}$ could be found in the X-ray diffraction pattern. The setting time of cement pastes added clinkers fired at 1,15$0^{\circ}C$ was shorter than that of ordinary portland cement. Also the compressive strengths of the cement mortar added clinkers was higher than those of ordinary portland cement.

  • PDF

Rheological Properties of Cement Paste incorporating Domestic HWRA for Ultra-high-fluidity concrete

  • Choi, Yeol;Kim, Jin-Gi;Park, Hwa-Jung;Kim, Hwa-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.949-952
    • /
    • 2006
  • An understanding of rheological property on cement paste is one of the important factor to design concrete such as High-fluidity Concrete (HFC) for a specific application. The HFC is a specially proportioned hydraulic cement concrete that enables the fresh concrete to flow easily into the forms and around the reinforcement and prestressing steel without vibration and segregation. Use of this type of concrete for the concrete building construction, manufacture of precast, prestressed bridge elements provides the benefits of increased rate of production and safety, reduced labor needs, and lower noise levels. This paper presents the performance of rheological properties of cement paste incorporating domestic high-water-reduced-admixture (HWRA) for an Ultra-high-fluidity concrete (UHFC). Investigation was carried out on cement pastes with combinations of various dosages of HWRA and water/cement ratios.

  • PDF

Realistic pore structure of Portland cement paste: experimental study and numerical simulation

  • Ma, Hongyan;Li, Zongjin
    • Computers and Concrete
    • /
    • v.11 no.4
    • /
    • pp.317-336
    • /
    • 2013
  • In this study, the pore structure of Portland cement paste is experimentally characterized by MIP (mercury intrusion porosimetry) and nitrogen adsorption, and simulated by a newly developed status-oriented computer model. Cement pastes with w/c=0.3, 0.4 and 0.5 at ages from 1 day to 120 days are comprehensively investigated. It is found that MIP cannot generate valid pore size distribution curves for cement paste. Nevertheless, nitrogen adsorption can give much more realistic pore size distribution curves of small capillary pores, and these curves follow the same distribution mode. While, large capillary pores can be effectively characterized by the newly developed computer model, and the validity of this model has been proved by BSE imaging plus image analysis. Based on the experimental findings and numerical simulation, a hypothesis is proposed to explain the formation mechanism of the capillary pore system, and the realistic representation of the pore structure of hydrated cement paste is established.

Performance of carbon fiber added to anodes of conductive cement-graphite pastes used in electrochemical chloride extraction in concretes

  • Pellegrini-Cervantes, M.J.;Barrios-Durstewitz, C.P.;Nunez-Jaquez, R.E.;Baldenebro-Lopez, F.J.;Corral-Higuera, R.;Arredondo-Rea, S.P.;Rodriguez-Rodriguez, M.;Llanes-Cardenas, O.;Beltran-Chacon, R.
    • Carbon letters
    • /
    • v.26
    • /
    • pp.18-24
    • /
    • 2018
  • Pollution of chloride ion-reinforced concrete can trigger active corrosion processes that reduce the useful life of structures. Multifunctional materials used as a counter-electrode by electrochemical techniques have been used to rehabilitate contaminated concrete. Cement-based pastes added to carbonaceous material, fibers or dust, have been used as an anode in the non-destructive Electrochemical Chloride Extraction (ECE) technique. We studied the performance of the addition of Carbon Fiber (CF) in a cement-graphite powder base paste used as an anode in ECE of concretes contaminated with chlorides from the preparation of the mixture. The experimental parameters were: 2.3% of free chlorides, 21 days of ECE application, a Carbon Fiber Volume Fraction (CFVF) of 0.1, 0.3, 0.6, 0.9%, a lithium borate alkaline electrolyte, a current density of $4.0A/m^2$ and a cement/graphite ratio of 1.0 for the paste. The efficiency of the ECE in the traditional technique using metal mesh as an anode was 77.6% and for CFVF of 0.9% it was 90.4%, with a tendency to increase to higher percentages of the CFVF in the conductive cement-graphite paste, keeping the pH stable and achieving a homogeneous ECE in the mass of the concrete contaminated with chlorides.

Effects of Chloride Binding on the Cement Hydration at early ages (초기재령에 있어 시멘트 수화에 따른 염화물 고정화 효과)

  • 문소현;소승영;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.437-442
    • /
    • 1999
  • Corrosion of steel reinforcment is the most significant factor of deterioration in reinforced concrete structures. Chloride ion is considered one of the most common culprits on the corrosion of steels in concrete. This study is effect of cement hydraulic degree on the chloride binding in hardened cement pastes. With increasing the cement hydration, cement products such as CSH and Ca(OH)2 were increased, and the part of added chloride were binded with them. With respect to A type, in first, the additional contents of chloride of 27.08mM/L in pore solution were reduced as 4.3mM/L at 3 days, 4.0mM/L at 7 days, 3.6mM/L at 28 days.

  • PDF