• Title/Summary/Keyword: cement mortar and paste

Search Result 153, Processing Time 0.024 seconds

Effect of Nano-sized Calcium-silicate-hydrate (C-S-H) Crystals on Cement Hydration (나노 크기 칼슘-실리케이트-하이드레이트(C-S-H) 결정이 시멘트 수화에 미치는 영향 분석)

  • Gyeong-Tae Kim;Su-Ji Woo;Sung-Won Yoo;Young-Cheol Choi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.2
    • /
    • pp.153-160
    • /
    • 2023
  • In this study, nano-sized C-S-H crystals were synthesized using the liquid phase reaction method and their properties were investigated. The synthesized C-S-H crystals were added to the cement composite in suspension form to determine their effect on the hydration properties of the cement. The amount of chemical admixture was varied to obtain nano-sized C-S-H crystals with optimal agglomerated morphology, and SEM photographs were analyzed. A cleaning process was added to remove harmful substances other than the synthesiz ed C-S-H crystals. It was found that the concentration of harmful substances was reduced in the case of C-S-H crystals subjected to the cleaning process. The synthesized C-S-H suspensions were prepared with and without the cleaning process, and cement composites were prepared with the cement weight content as the main variable. The effect of C-S-H crystals on the initial hydration properties of the cement was confirmed by microhydration heat analysis. In addition, mortar specimens were prepared to measure the compressive strength over time. The test results showed that the nano-sized C-S-H crystals act as nucleation sites in the cement paste to promote the early hydration of the cement and increase the early compressive strength.

A Study for Improving the Fluidity Retention in Concrete Used High Range Water Reducing AE Agent (고성능AE감수제 사용 콘크리트의 유동성 유지성능 향상을 위한 연구)

  • 김기형
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.313-323
    • /
    • 1998
  • Fluidity retention of concrete used high range water reducing AE agent(HWAE) is varied according to main component, dosage amount and dosing method of HWAE. The type and substitution ratio of mineral admixture also have influence on the fluidity retention of concrete used HWAE. In this study, for the purpose of improving the fluidity retention in concrete used HWAE. 3 types of HWAE and ground granulated blast furnace slag(SG) are used in cement paste, mortar and concrete varing dosage amount and dosing time of HWAE and substitution ratio of SG respectively. According to using the HWAE of naphthalene sulfonates and SG, the fluidity retention of mortar and concrete is improved remarkably. And after 30 min, dosing method of HWAE is very effective in improving the fluidity retension and strength of concrete regardless of type of HWAE.

Petrographic Study(ASTM C 295) on the KEDO Concrete Aggregates (콘크리트용 KEDO 골재의 암석기재시험 (ASTM C295))

  • Jeong, Ji-Gon;Kim, Kyung-Su;Lee, Chol-Woo
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.589-599
    • /
    • 2007
  • For the preliminary judgement on the chemical stability of concrete aggregates mixed with cement paste, ASTM C 295 method can be applied prior to the long-term chemical test methods. By using this standard test method, the petrographic study on the appropriateness of natural KEDO aggregates for concrete was carried out. With the natural gravel and sand aggregates, the polarized microscope, stereoscopic microscope, and X-ray diffractometer were used for examination. The result shows the 23% of gravel aggregates and 5.1% of sand aggregates are chemically unstable. To select the favorable KEDO concrete aggregates, it is required to exclude the highly metamorphosed rocks, acidic volcanic rocks, highly foliated rocks, and expansive rocks identified from mortar-bar test. Further chemical test and mortar-bar test method integrated with this study is recommended for the suitability assessment of natural KEDO concrete aggregates.

Heterogeneous Simulation on Concrete Shrinkage using Meso-model (메소모델을 사용한 비균질성을 고려한 콘크리트의 수축 해석)

  • Shin, Kyung-Joon;Lee, Do-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.104-110
    • /
    • 2019
  • Shrinkage is one of typical characteristics of concrete with cement paste and aggregates. A lot of studies on this has been conducted with an assumption that the concrete is a homogeneous material. However, as shrinkage acts on only one of the components that consist of concrete, it is hard to be characterized only by the average effective properties. Therefore, in this paper, the concrete shrinkage, which is one of the typical characteristics and still has a lot of uncertainty, is simulated considering its heterogeneous properties. Using a meso model, concrete is modeled with the combination of mortar and aggregates, and the shrinkage is simulated by applying the shrinkage strain on the mortar only. According to the results, it is shown that the cracking of shrinking concrete is largely influenced by the types of aggregates and the degree of restraint. Also, the shrinkage cracking cannot be represented only by the single values such as tensile strength since the stiffness of aggregates and the degree of restraint influence the cracking.

Effect of the type of sand on the fracture and mechanical properties of sand concrete

  • Belhadj, Belkacem;Bederina, Madani;Benguettache, Khadra;Queneudec, Michele
    • Advances in concrete construction
    • /
    • v.2 no.1
    • /
    • pp.13-27
    • /
    • 2014
  • The principal objective of this study is to deepen the characterization studies already led on sand concretes in previous works. Indeed, it consists in studying the effect of the sand type on the main properties of sand concrete: fracture and mechanical properties. We particularly insist on the determination of the fracture characteristics of this material which apparently have not been studied. To carry out this study, four different types of sand have been used: dune sand (DS), river sand (RS), crushed sand (CS) and river-dune sand (RDS). These sands differ in mineralogical nature, grain shape, angularity, particle size, proportion of fine elements, etc. The obtained results show that the particle size distribution of sand has marked its influence in all the studied properties of sand concrete since the sand having the highest diameter and the best particle size distribution has given the best fracture and mechanical properties. The grain shape, the angularity and the nature of sand have also marked their influence: thanks to its angularity and its limestone nature, crushed sand yielded good results compared to river and dune sands which are characterized by rounded shape and siliceous nature. Finally, it should further be noted that the sand concrete presents values of fracture and mechanical properties slightly lower than those of ordinary concrete. Compared to mortar, although the mechanical strength is lower, the fracture parameters are almost comparable. In all cases, the sand grains are debonded from the paste cement during the fracture which means that the crack goes through the paste-aggregate interface.

Prediction of compressive strength of GGBS based concrete using RVM

  • Prasanna, P.K.;Ramachandra Murthy, A.;Srinivasu, K.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.691-700
    • /
    • 2018
  • Ground granulated blast furnace slag (GGBS) is a by product obtained from iron and steel industries, useful in the design and development of high quality cement paste/mortar and concrete. This paper investigates the applicability of relevance vector machine (RVM) based regression model to predict the compressive strength of various GGBS based concrete mixes. Compressive strength data for various GGBS based concrete mixes has been obtained by considering the effect of water binder ratio and steel fibres. RVM is a machine learning technique which employs Bayesian inference to obtain parsimonious solutions for regression and classification. The RVM is an extension of support vector machine which couples probabilistic classification and regression. RVM is established based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Compressive strength model has been developed by using MATLAB software for training and prediction. About 70% of the data has been used for development of RVM model and 30% of the data is used for validation. The predicted compressive strength for GGBS based concrete mixes is found to be in very good agreement with those of the corresponding experimental observations.

Expansion Properties of Mortar Using Waste Glass and Industrial By-Products

  • Park, Seung-Bum;Lee, Bong-Chun
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.2E
    • /
    • pp.125-132
    • /
    • 2006
  • Waste glass has been increasingly used in industrial applications. One shortcoming in the utilization of waste glass for concrete production is that it can cause the concrete to be weakened and cracked due to its expansion by alkali-silica reaction(ASR). This study analyzed the ASR expansion and strength properties of concrete in terms of waste glass color(amber and emerald-green), and industrial by-products(ground granulated blast-furnace slag, fly ash). Specifically, the role of industrial by-products content in reducing the ASR expansion caused by waste glass was analyzed in detail. In addition, the feasibility of using ground glass for its pozzolanic property was also analyzed. The research result revealed that the pessimum size for waste glass was $2.5{\sim}1.2mm$ regardless of the color of waste glass. Moreover, it was found that the smaller the waste glass is than the size of $2.5{\sim}1.2mm$, the less expansion of ASR was. Additionally, the use of waste glass in combination with industrial by-products had an effect of reducing the expansion and strength loss caused by ASR between the alkali in the cement paste and the silica in the waste glass. Finally, ground glass less than 0.075 mm was deemed to be applicable as a pozzolanic material.

Adhesive Strength and Setting Shrinkage of UP Polymer Mortar Intermixed with Waste Rubber Powder (폐고무분말을 혼입한 UP 폴리머모르타르의 경화수축 및 부착강도)

  • Yeon, Kyu-Seok;Jin, Nan-Ji;Choi, Jong-Yun;Beck, Jong-Man
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.383-386
    • /
    • 2003
  • In this study, the MMA-modified paste mixed waste rubber powder, which has a small elastic modulus and a large modification, was produced by using the soft unsaturated polyester resin(UP) as a binder. Then the adhesive properties according to the matrices in both underwater and air-dry conditions and the hardening shrinkage according to the contents of shrinkage reducing agent(SRA) and of MMA were surveyed. The experimental results show that, regardless of humidity of matrices the adhesive strength of polymer concrete was larger than cement concrete. the adhesive strength of MMA content of 20% was larger than MMA content of 30%. regardless of matrix materials the adhesive strength in water condition were $20{\sim}30%$ comparing with the air-dry condition. The case of MMA content of 20% showed the largest adhesive strength. In the hardening shrinkage experiment, the hardening shrinkage reduced as MMA and SRA contents increased, and the decrease of the hardening shrinkage by SRA was larger.

  • PDF

Separation of Recycled Aggregates from Waste Concrete by Heavy Medium Separation (폐콘크리트에서 중액선별(重液選別)을 이용한 재생골재(再生骨材)의 선별(選別))

  • Lee, Myung-Gyu;Kwon, Ki-O;Gayabazar, Ganbileg;Kang, Heon-Chan
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.13-18
    • /
    • 2007
  • The recycled aggregates produced from waste concrete by crushing and granularity adjusting processes only can't be used for structural aggregates because they display low density and high abrasion rate by including lots of mortar and cement paste. However, the recycled aggregates include a lot of aggregates for concrete. Using the heavy medium separation method that is one of the specific gravity separation methods, about 45% of the waste concrete could be converted to the recycled aggregates.

Low-Cost Cultivation and Sporulation of Alkaliphilic Bacillus sp. Strain AK13 for Self-Healing Concrete

  • Hong, Minyoung;Kim, Wonjae;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1982-1992
    • /
    • 2019
  • The alkaliphilic, calcium carbonate precipitating Bacillus sp. strain AK13 can be utilized in concrete for self-repairing. A statistical experimental design was used to develop an economical medium for its mass cultivation and sporulation. Two types of screening experiment were first conducted to identify substrates that promote the growth of the AK13 strain: the first followed a one-factor-at-a-time factorial design and the second a two-level full factorial design. Based on these screening experiments, barley malt powder and mixed grain powder were identified as the substrates that most effectively promoted the growth of the AK13 strain from a range of 21 agricultural products and by-products. A quadratic statistical model was then constructed using a central composite design and the concentration of the two substrates was optimized. The estimated growth and sporulation of Bacillus sp. strain AK13 in the proposed medium were 3.08 ± 0.38 × 108 and 1.25 ± 0.12 × 108 CFU/ml, respectively, which meant that the proposed low-cost medium was approximately 45 times more effective than the commercial medium in terms of the number of cultivatable bacteria per unit price. The spores were then powdered via a spray-drying process to produce a spore powder with a spore count of 2.0 ± 0.7 × 109 CFU/g. The AK13 spore powder was mixed with cement paste, yeast extract, calcium lactate, and water. The yeast extract and calcium lactate generated the highest CFU/ml for AK13 at a 0.4:0.4 ratio compared to 0.4:0.25 (the original ratio of the B4 medium) and 0.4:0.8. Twenty-eight days after the spores were mixed into the mortar, the number of vegetative cells and spores of the AK13 strain had reached 106 CFU/g within the mortar. Cracks in the mortar under 0.29 mm were healed in 14 days. Calcium carbonate precipitation was observed on the crack surface. The mortar containing the spore powder was thus concluded to be effective in terms of healing micro-cracks.