• Title/Summary/Keyword: cement industry

Search Result 388, Processing Time 0.021 seconds

A study on the Properties of Cement Mortar Containing Electrically Conductive Materials (전기전도성 재료를 혼입한 시멘트 모르타르의 전기적 특성에 관한 연구)

  • 최길섭;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.933-938
    • /
    • 2000
  • Concrete has been used for many years as a composite material that has excellent mechanical properties and durability for construction. However, concrete is a poor electrical conductor, especially under dry conditions. Concrete that is excellent in both mechanical and electrical conductivity properties may have important applications in the electrical, electronic, military and construction industry(e.g. for de-icing road from snow). The purpose of this investigation is to improve the electrical conductive of cement mortar preparared with coke dust, graphite, carbon black and carbon fiber as filler. From the test result, as the content of electrically conductive material increased, fluidity and strength decreased but resistivity decreased. The resistivity of electrical conductive cement mortar is effect by water/cement, and aggregate. Cement mortar containing carbon fiber has the best electrical properties considering strength. From this study, it is enough to assure the use of carbon fiber, carbon black and graphite as a conductive filler for electrical conductive cement mortar.

Strength Properties of Non-cement Matrix Mixed with Tourmaline (토르마린을 혼입한 무시멘트 경화체의 강도 특성)

  • Kwon, Hyeong-Soon;Lee, Chang-woo;Hwang, Woo-Jun;Lee, Sang-soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.55-56
    • /
    • 2022
  • As global warming becomes serious, research is continuously being conducted to reduce CO2 emissions. Among building materials, the carbon emission of cement is so high that it accounts for 6.8% of the carbon emission of the entire industry. Studies replacement of cement with blast furnace slag and fly ash are steadily increasing. In addition, efforts are being made to reduce air pollution due to increased damage caused by increased concentrations of harmful substances such as fine dust and heavy metals in the air. There is an increasing number of studies that enable adsorption by mixing adsorbents into building materials. This study reviewed the strength properties to make an adsorbable non-cement finishing material by mixing tourmaline, an adsorbent, based on the non-cement composite, and confirmed that the strength decreases as the replacement ratio increases.

  • PDF

Development of CO2 Emission Factors for Alternative Fuels with Assessment of Emission Reduction in Cement Industry (시멘트산업의 CO2 배출계수 개발 및 대체연료 사용에 의한 온실가스 저감량 산정 연구)

  • Yoon, Seok-Kyung;Myeong, Soo-Jeong;Jang, Tae-Hyeog;Kim, Jin-Su;Lee, See-Hyung;Kim, Ki-Hyun;Jeon, Eui-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.189-195
    • /
    • 2008
  • We developed emission factors for alternative fuels used in cement industries in Korea and also estimated reduction in emissions of greenhouse gas (GHG) by the use of alternative fuels. Emission factors for GHG of waste tire, waste plastic, waste oil and RDF were estimated to be about 89, 78, 77 and 95 ton $CO_2$/TJ respectively. When compared with previous studies, most of the results showed similar trends. The calorific value estimation and elemental analysis for energy source were implemented in order to estimate the exact emission factors and the reduction of GHG emissions using alternative fuel. In the case of 'A' company, $CO_2$ emission from alternative fuels was about 4% lower than that of bituminous coal only. Also in case of company 'B', $CO_2$ emission from alternative fuels was about 1.4% lower than that of only bituminous coal. In Germany and Japan, alternative fuel is not regarded to be fuel consumption in cement industry. When applying this rule, the emission reductions were about 4.3% for company 'A' and 6.3% for company 'B'. The results of this study may be considered as a useful information for developing strategies in reducing GHG emissions.

Properties of Lightweight Foamed Concrete with Waste Styrofoam and Crude Steel Cement (폐스티로폼과 조강시멘트를 혼입한 경량기포콘크리트의 특성)

  • Park, Chae-Wool;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.77-78
    • /
    • 2020
  • In Korea, more than 30,000 tons of waste Styrofoam are produced every year. Styrofoam is spent more than 500 years decomposing during the reclamation process, so it needs to be recycled. The recycling rate of waste styrofoam continues to be the third highest in the world, but it is lower than that of Germany and Japan. Therefore, measures are needed to increase the recycling rate of waste Styropol. Another problem is that cement is mainly used in existing lightweight foam concrete. However, large amounts of CO2 from cement-producing processes cause environmental pollution. Currently, Korea is increasing its greenhouse gas reduction targets to cope with energy depletion and climate change, and accelerating efforts to identify and implement reduction measures for each sector. In 2013 alone, about 600 million tons of carbon dioxide was generated in the cement industry. Therefore, this study replaces CO2 generation cement with furnace slag fine powder, uses crude steel cement for initial strength development of bubble concrete, and manufactures hardening materials to study its properties using waste styrofoam. As a result of the experiment, the hardening agent replaced by micro powder of furnace slag was less intense and more prone to absorption than cement using ordinary cement. Further experiments on the segmentation and strength replenishment of furnace slag are believed to contribute to the manufacture of environmentally friendly lightweight foam concrete.

  • PDF

Trend of Nitrogen Oxide Reduction Technologies in Cement Industry (시멘트 산업에서의 질소산화물 저감 기술 동향)

  • Seo, JunHyung;Kim, YoungJin;Cho, KyeHong;Cho, JinSang;Han, KyungHo;Yoon, DoYoung
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.114-124
    • /
    • 2020
  • In the cement industry, NOx emission is recognized as an important problem, and NOx reduction technologies can be divided into process change, staged combustion, low NOx burner, selective non-catalytic reduction and selective catalytic reduction method. The operation of the selective non-catalytic reduction method, which is the most used in the cement industry, is expected to make it difficult to meet the emission standards to be strengthened in the future, and it is necessary to improve equipment such as SCR and secure technologies. Recently, we are developing technologies for simultaneous application of SNCR and SCR, dust and denitrification filter technology, and removal technology using NO oxidation.

Use of partial least squares analysis in concrete technology

  • Tutmez, Bulent
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.173-185
    • /
    • 2014
  • Multivariate analysis is a statistical technique that investigates relationship between multiple predictor variables and response variable and it is a very commonly used statistical approach in cement and concrete industry. During model building stage, however, many predictor variables are included in the model and possible collinearity problems between these predictors are generally ignored. In this study, use of partial least squares (PLS) analysis for evaluating the relationships among the cement and concrete properties is investigated. This regression method is known to decrease the model complexity by reducing the number of predictor variables as well as to result in accurate and reliable predictions. The experimental studies showed that the method can be used in the multivariate problems of cement and concrete industry effectively.

The Fluidity and Compressive Strength of Non-Cement Porous Block Using High Volume Blast Furnace Slag Powder (고로슬래그 미분말을 대량 활용한 무시멘트 투수블록의 유동성 및 압축강도 특성)

  • Kim, Young-Uk;Kim, Sung-Jin;Kim, Hye-Jeong;Jeong, Su-Bin;Choi, Hee-Yong;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.212-213
    • /
    • 2017
  • The study investigated the fluidity and compressive strength of non-cement porous block using blast furnace slag powder to reduce CO2 in the construction industry.

  • PDF

Analysis of Possibilities of Rapid Appraisal of Blast Furnace Slag Cement Fineness Quality Using the Hydrometer Method (Hydrometer법을 이용한 고로슬래그 시멘트의 분말도 신속 품질 평가 가능성 분석)

  • Lee, Jae-Jin;Kim, Min-Sang;Moon, Byeong-Yong;Han, In-Deok;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.169-170
    • /
    • 2017
  • Recently in the construction industry there has been an increasing use of increasing replacement of cement with blast furnace slag cement(BS), an industrial by-product, to reduce environment load and production costs, and other increasing uses of BS cement. However in the case of BS being delivered in RMC factories, only score reports submitted when the are delivered are relied upon and ways to test the quality of fineness is inadequate. Therefore this study gave many changes to various cements and BS fineness to test the variations of BS as a cement, then used the correlation between this and the density value in the Hydrometer method to test the possibility for rapid appraisal of quality fineness of BS cement. Results showed that if the one fifth graph of the density and fineness correlation were to be used, a rapid appraisal of BS cement fineness quality would be possible.

  • PDF

Laboratory analysis of loose sand mixed with construction waste material in deep soil mixing

  • Alnunu, Mahdi Z.;Nalbantoglu, Zalihe
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.559-571
    • /
    • 2022
  • Deep soil mixing, DSM technique has been widely used to improve the engineering properties of problematic soils. Due to growing urbanization and the industrial developments, disposal of brick dust poses a big problem and causes environmental problems. This study aims to use brick dust in DSM application in order to minimize the waste in brick industry and to evaluate its effect on the improvement of the geotechnical properties. Three different percentages of cement content: (10, 15 and 20%) were used in the formation of soil-cement mixture. Unlike the other studies in the literature, various percentages of waste brick dust: (10, 20 and 30%) were used as partial replacement of cement in soil-cement mixture. The results indicated that addition of waste brick dust into soil-cement mixture had positive effect on the inherent strength and stiffness of loose sand. Cement replaced by 20% of brick dust gave the best results and reduced the final setting time of cement and resulted in an increase in unconfined compressive strength, modulus of elasticity and resilient modulus of sand mixed with cement and brick dust. The findings were also supported by the microscopic images of the specimens with different percentages of waste brick dust and it was observed that waste brick dust caused an increase in the interlocking between the particles and resulted in an increase in soil strength. Using waste brick dust as a replacement material seems to be promising for improving the geotechnical properties of loose sand.

Characteristics of early strength development of blended cement according to the addition of C-S-H based Hardening acceleration (C-S-H계 조강제 첨가에 따른 혼합시멘트의 조기 강도 발현 특성)

  • An, Tae-Yun;Ra, Jeong-Min;Park, Jun-Hyung;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.127-128
    • /
    • 2022
  • In order to realize carbon neutrality in the international society, research on supplementary cementitious materials(SCMs) has been actively conducted as a way to reduce carbon dioxide emissions in the cement industry. However, the use of SCMs causes problems of initial hydration delay and strength reduction due to the reduction of tricalcium silicate(C3S) in the cement clinker. Therefore, in this study, the initial hydration and basic characteristics of cement mortar were confirmed by adding a C-S-H based hardening acceleration to blended cement mixed with Portland cement, blast furnace slag, fly ash, and limestone power. As a result of the heat of hydration and compressive strength test, it was confirmed that when hardening acceleration was added, the initial reactivity was high, so the heat of hydration was promoted, and the initial strength was increased. It is considered to be due to C-S-H seeding effect. Therefore, it is judged that the use of C-S-H based hardening acceleration can supplement the problem of initial hydration delay of blended cement in Korea.

  • PDF