• Title/Summary/Keyword: cement displacement

Search Result 120, Processing Time 0.028 seconds

Tension-Stiffening and Cracking Behavior of 100 MPa Shrinkage-Compensated Ultra High-Strength Strain-Hardening Cement Composite (UHS-SHCC) Ties (100 MPa급 수축보상 초고강도 변형경화형 시멘트 복합체를 사용한 인장부재의 인장강성 및 균열특성)

  • Song, Young-Jae;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.371-379
    • /
    • 2013
  • This paper investigates the cracking and tension-stiffening behavior of 100 MPa shrinkage-compensated strain-hardening cement composite (SHCC) and conventional concrete tie elements in monotonic and cyclic tension. Strain and surface crack formation of tension ties were monitored with two strain displacement transducers and a photo microscope with a lens of magnification 50 times. Three different cement composites such as conventional concrete, shrinkage-compensated SHCC, and normal SHCC were used in the tie specimens to investigate the influence of the cement composite type on the tension stiffening and cracking behavior. Test results indicated that initial shrinkage of the ultra high-strength cement composites is greatly reduced as the 10% replacement of cement by the shrinkage-compensating admixture based on calcium sulfo-aluminate (CSA). The test results on the SHCC tension ties showed that the first cracking load decreases proportionally to the initial shrinkage strain. Reinforced ultra high-strength SHCC ties with the initial shrinkage compensation exhibited improved tension stiffening and smaller crack spacings, i.e. the reduction in crack width. Cyclic loading did not have a significant effect on tension stiffening and cracking behavior of tension ties with normal concrete and SHCC materials.

Scaled Test on the Behavior of the Toe of Drilled Shaft on Rock Mass (암반에 근입된 말뚝의 선단 거동 특성에 관한 축소모형시험 연구)

  • Park, Woan-Suh;Choi, Se-Keun;Jeon, Seok-Won;Han, Yong-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1166-1171
    • /
    • 2008
  • Despite of the increasing number of the application of drilled shaft piles in construction site, most studies on pile capacity have been focused on the side shear resistance. But it is common that the drilled shaft is socketed on the rock so as to use its bearing resistance. The prediction of the end movement and characteristics of the bearing capacity of the pile is great important as well. Therefore, a series of scaled model tests were carried out in order to study the characteristics of the bearing capacity on rock mass. The material of the test block was cement mortar which was mixed with sand, cement and water, and the size of a test block size was $240{\times}240{\times}240mm$. The axial load was applied by a miniaturized pile of 45mm in diameter and flat jacks and steel plate were used for confinement to simulate the real underground loading conditions. The relation of load-displacement was measured in various different conditions of rock mass such as strength, discontinuity of the rock mass and in-situ stress, so q-w curves of the end of the pile were presented for each condition.

  • PDF

High performance fibre reinforced cement concrete slender structural walls

  • Ganesan, N.;Indira, P.V.;Seena., P.
    • Advances in concrete construction
    • /
    • v.2 no.4
    • /
    • pp.309-324
    • /
    • 2014
  • In the design of reinforced concrete structural walls, in order to ensure adequate inelastic displacement behaviour and to sustain deformation demands imposed by strong ground motions, special reinforcement is considered while designing. However, these would lead to severe reinforcement congestion and difficulties during construction. Addition of randomly distributed discrete fibres in concrete improves the flexural behaviour of structural elements because of its enhanced tensile properties and this leads to reduction in congestion. This paper deals with effect of addition of steel fibres on the behavior of high performance fibre reinforced cement concrete (HPFRCC) slender structural walls with the different volume fractions of steel fibres. The specimens were subjected to quasi static lateral reverse cyclic loading until failure. The high performance concrete (HPC) used was obtained based on the guidelines given in ACI 211.1 which was further modified by prof.Aitcin (1998). The volume fraction of the fibres used in this study varied from 0 to 1% with an increment of 0.5%. The results were analysed critically and appraised. The study indicates that the addition of steel fibres in the HPC structural walls enhances the first crack load, strength, initial stiffness and energy dissipation capacity.

Retrofitting of squat masonry walls by FRP grids bonded by cement-based mortar

  • Popa, Viorel;Pascu, Radu;Papurcu, Andrei;Albota, Emil
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.125-139
    • /
    • 2016
  • For seismic retrofitting of masonry walls, the use of fibre reinforced cement-based mortar for bonding the fibre grids can eliminate some of the shortcomings related to the use of resin as bonding material. The results of an experimental testing program on masonry walls retrofitted with fibre reinforced mortar and fibre grids are presented in this paper. Seven squat masonry walls were tested under unidirectional lateral displacement reversals and constant axial load. Steel anchors were used to increase the effectiveness of the bond between the fibre grids and the masonry walls. Application of fibre grids on both lateral faces of the walls effectively improved the hysteretic behaviour and specimens could be loaded until slip occurred in the horizontal joint between the masonry and the bottom concrete stub. Application of the fibre grids on a single face did not effectively improve the hysteretic behaviour. Retrofitting with fibre reinforced mortar only prevented the early damage but did not effectively increase deformation capacity. When the boundaries of the cross sections were not properly confined, midplane splitting of the masonry walls occurred. Steel anchors embedded in the walls in the corners area effectively prevented this type of failure.

Tension Stiffening Effects of MMA-Modified Polymer Concrete (MMA 개질 폴리머 콘크리트의 인장증강 효과)

  • Yeon Kyu Seok;Kweon Taek Jeong;Jeong jung Ho;Jin Xing Qi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.304-307
    • /
    • 2004
  • Direct tensile tests were carried out for the tensile members of MMA-modified polymer concrete with different steel kinds and steel diameters and steel ratios to figure out the effect of tensile strength of polymer concrete. In the experiments, MMA-modified polymer concrete with $1000\;kgf/cm^2$ of compressive strength, steel with $5200\;kgf/cm^2$ of tensile strength, and the tensile members with 100 cm of constant length were used. Experimental results showed that, regardless of steel kinds, diameters and steel content, the strain energy exerted by concrete till the initial crack was $14-15\%$ of the total energy till the point of yield: The energy was much larger than the one of high-strength cement concrete. The behaviors of tensile members of MMA-modified polymer concrete were in relatively good agreement with the model suggested by Gupta-Maestrini (1990), which was idealized by the effective tensile stress-strain relationship of concrete and the load-strain relationship of members, while those showed a big difference from CEB-FIP model and ACI-224 equation suggested for the load-displacement relationship that was defined as the cross sectional stiffness of effective axis. Modified ACI-224 model code about the load-displacement relationship for the tensile members of MMA-modified polymer concrete and theoretical equation for the polymer concrete tensile stiffness of polymer concrete suggested through the results of this study are expected to be used in an accurate structural analysis and resign for the polymer concrete structural members.

  • PDF

Tension Stiffening of Reinforced Polymer Concrete Tension member (철근보강 폴리머 콘크리트 인장부재의 인장강성)

  • Yeon, Kyu-Seok;Jin, Nan-Ji;Jo, Kyu-Woo;Kweon, Taek-Jong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.387-390
    • /
    • 2003
  • Direct tensile tests were carried out for the tensile members of steel-reinforced polymer concrete with different steel diameters and steel ratios to figure out the effect of tensile strength of polymer concrete. In the experiments, polymer concrete with $1000kgf/cm^2$ of compressive strength, steel with $5200kgf/cm^2$ of tensile strength, and the tensile members with 100 cm of constant length were used. Experimental results showed that, regardless of steel diameters and steel content, the strain energy exerted by concrete till the initial crack was 14-15% of the total energy till the point of yield: The energy was much larger than the one of high-strength cement concrete. The behaviors of tensile members of steel-reinforced polymer concrete were in relatively good agreement with the model suggested by Gupta-Maestrini (1990), which was idealized by the effective tensile stress-strain relationship of concrete and the load-strain relationship of members, while those showed a big difference from CEB-FIP model and ACI-224 equation suggested for the load-displacement relationship that was defined as the cross sectional stiffness of effective axis. Modified ACI-224 model code about the load-displacement relationship for the tensile members of steel-reinforced polymer concrete and theoretical equation for the polymer concrete tensile stiffness of polymer concrete suggested through the results of this study are expected to be used in an accurate structural analysis and design for the polymer concrete structural members.

  • PDF

An Effects of the Strength Development of High Strength Mortar under Temperature History by Steam Curing (촉진양생에 의한 온도이력이 고강도 모르타르의 강도발현에 미치는 영향)

  • Kwon, Hee-Sung;Choi, Eung-Kyu;Lim, Nam-Ki;Lee, Young-Do;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.4
    • /
    • pp.115-121
    • /
    • 2008
  • The present study performed low-pressure steam curing with mortar specimens in order to examine the temperature profile and strength development of steam curing in high-strength specimens of 100MPa. In addition, as a basic research to utilize PC products, we examined the effects of curing temperature and time in steam curing cycle on strength development resulting from the hydration of cement within the range of high strength by changing four factors affecting the quality of PC displacement time, peak curing temperature, peak temperature duration, and ascending and descending gradient of temperature - in various patterns, and analyzed the optimal strength development characteristic based on the relation between temperature profile and strength development. With regard to the high-temperature curing characteristic of PC, we performed an experiment on the strength characteristic according to the temperature profile of high-strength mortar, and from the results of the experiment according to curing characteristic, displacement time, peak curing temperature, peak temperature duration, and ascending and descending gradient of temperature, we drew conclusions as follows.

Flexural behavior of RC beams made with basalt and polypropylene fibers: Experimental and numerical study

  • Murad, Yasmin Z.;Abdel-Jabar, Haneen
    • Computers and Concrete
    • /
    • v.30 no.3
    • /
    • pp.165-173
    • /
    • 2022
  • The effect of basalt and polypropylene fibers on the flexural behavior of reinforced concrete (RC) beams is investigated in this paper. The compressive and tensile behaviors of the basalt concrete and polypropylene concrete cylinders are also investigated. Eight beams and 28 cylinders were made with different percentages of basalt and polypropylene fibers. The dosages of fiber were selected as 0.6%, 1.3%, and 2.5% of the total cement weight. Each type of fiber was mixed solely with the concrete mix. Basalt and polypropylene fibers are modern and cheap materials that can be used to improve the structural behavior of RC members. This research is designed to find the optimum percentage of basalt and polypropylene fibers for enhancing the flexural behavior of RC beams. Test results showed that the addition of basalt and polypropylene fibers in any dosage (0.6%, 1.3%, and 2.5%) can increase the flexural strength and displacement ductility index of the beams where the maximum enhancement was measured with 1.3% fibers. The maximum increments in the flexural strength and the displacement ductility index were 30.39% and 260% for the basalt fiber case, while the maximum improvement for the polypropylene fibers case was 55.5% and 230% compared to the control specimen. Finite element (FE) models were then developed in ABAQUS to predict the numerical behaviour of the tested beams. The FE models were able to predict the experimental behaviour with reasonable accuracy. This research confirms the efficiency of basalt and polypropylene fibers in enhancing the flexural behavior of RC beams, and it also suggests the optimum dosage of fibers.

A STUDY ON STRESS DISTRIBUTION OF ENDODONTICALLY TREATED TOOTH ACCORDING TO THE VARIOUS POST LENGTH USINGTHREE-DIMENSIONAL FINITE ELEMENT METHOD (포스트 길이가 치근내 응력분산에 미치는 영향에 관한 삼차원 유한요소법적 연구)

  • Choi, Soo-Yong;Lee, Sun-Hyung;Yang, Jae-Ho;Chung, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.2
    • /
    • pp.177-197
    • /
    • 1995
  • The endodontically treated tooth is generally restored with post & core, owing to the brittleness and the loss of large amount of tooth structure. Although there have been lots of studies about the endodontically treated teeth, the three-dimensional quantitative studies about the strees distribution of them are in rare cases. In this study, it was assumed that the coronal portion of the upper incisou had severely damaged. After the root canal therapy it was post cored, and restored with PFM crown, for this experiment nine types of model were constructed : 1); long, 2); medium, 3); short gold post for the roots supported with a narmal alveolar bone, 4); long, 5); medium, 6); short gold post for the roots supported with an alveolar bone resorbed to its 1/3 of root length, 7); long, 8); medium, 9); short base metal post for the roots supported with an alveolar bone resorbed to its 1/3 of root length. Force was applied from two directions. One was functional maximum bite force(300N) applied to the spot just lingual to the incisal edge with the angle of 45 degrees to the long axis of the tooth, and the other one was horizontal force(300N) applied to the labial surface. The results analyzed with three-dimensional finite element method were as follows : 1. Stress was concentrated on the middle portion of the labial side dentin of the root and the lingual portion of the apical dentin of the root. Stress in the post showed maximum value at 2 mm above the post apex. 2. In case of the long post and base metal post, strees was concentrated on the apex of the root and the post. 3. In case of the longer post, the displacement on the post-cement interface was lessened. The gold post was more displaceable than the base metal post. 4. In case of the alveolar bone resorption, stress concentrated on the root and the post and displacement on the post-cement interface were increased.

  • PDF

A Study on the Effective Restraint Method of Lateral Displacement of an Inclined Earth Retaining Structure in Soft Clay (연약점토지반에 설치된 IER 지주식 흙막이의 효과적인 수평변위억제 방법에 관한 연구)

  • Kim, Jayoung;Im, Jong-Chul;Seo, Minsu;Kim, Changyoung;Park, Eun Kyeong;Park, Tae Keon
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.10
    • /
    • pp.15-24
    • /
    • 2017
  • A self-supported temporary excavation method called Inclined Earth Retaining structure (IER) has been developed by improving an existing excavation method. The stability of the IER was proved with both model tests and field tests. Especially, the results of the model tests proved that the lateral displacement of a model retaining wall was significantly reduced in clay. In this study, the applicability of the IER installed in the soft clay ground is estimated by analyzing survey data collected in the construction field. The results of FE analysis show that the lateral displacement of the IER decreased by 70.9% of that of a single row, self-supported retaining wall using the same number of H-piles. Thus, using the IER method in the soft clay ground will increase the stability of the excavated ground with the effect restraining its lateral displacement. Furthermore, using Deep Cement Mixing (DCM) to the upper half embedded depth of front support is recommended as a subsidiary method of reducing the lateral displacement of IER in the soft clay ground based on FE analysis results.