• Title/Summary/Keyword: cement composition

Search Result 227, Processing Time 0.028 seconds

Studies of concrete utilization of waste sludge by-producted in aggregate mines (석산골재광산에서 발생한 잔토의 콘크리트 유효이용에 대한 연구)

  • 엄태선;백상현;백원준;김창수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.7-12
    • /
    • 1998
  • The waste sludge is by-produced about 20-30% of total production and arised to the severe problems of this mine's surrounding environmnet. This study was invested the composition of component, particle of size of the waste sludge by Chemical Analysis, X, R, D, Particle Size Analyzer and the physical properties (air content, slump, strength, etc) of concrete when the waste sludge is added into concrete. so, It's recomended the proper content of the waste sludge to be added into concrete. and then, is verified to be applied at batch plant in field. Above the results, the recomeded content of the waste sludge is about 2-4% (about 4-8% in cement) in aggregates and when it's added the recomended content, they are detected to be more or less changed the physical properties of concrete, ( equally strength and durability, little less air con tent, little increased shinkage, etc). but the application of the recomended content don't arise the problem of the basic quality control of concrete and physical properties.

  • PDF

Properties of Alkali Activated MSWI (Municipal Solid Waste Incinerator) Ash Mortar (알칼리 활성화된 도시 폐기물 소각재 모르타르의 특성)

  • Jo Byung Wan;Koo Ja Kap;Park Seung Kook;Ko Hee Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.773-776
    • /
    • 2005
  • MSWI ash is the residue from waste combustion processes at temperature between $850^{\circ}C\;and\;1000^{\circ}C$. And the main components of MSWI ash are $SiO_2,\;CaO\;and\;Al_2O_3$. The aim of this study is to find a way to useful application of MSWI ash(after treatment) as a structural material and to investigates the hydraulic activity, compressive strength development, composition variation of such chemicallyi-activated MSWI ashes concrete. And it was found that early cement hydration, followed by the breakdown and dissolving of the MSWI-ashes, enhanced the formation of calcium silicate hydrates(C-S-H), The XRD and SEM-EDS results indicate that, both the hydration degree and strength development are closely connected with a curing condition and a chemically-activator. Compressive strengths with values in the 40.5MFa were obtained after curing the activated MSWI ashes with NaOH+water glass at $90^{\circ}C$.

  • PDF

Experimental study on the development of super high early strength concrete using C3S stimulating hardening accelerator (C3S 자극 경화촉진제를 사용한 초조강 콘크리트 개발에 관한 실험적 연구)

  • Min, Tae-Beom;Jo, In-Seong;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.266-267
    • /
    • 2014
  • In order to develop concrete generating compressive strength of 10MPa~15MPa aging for 6hours in the room temperature curing, Hardening accelerator containing Ca2+ mixed with rapid hardening portland cement containing C3S in quantity. The result was that the more addictive contents of Hardening accelerator is, the more greatly early compressive strength was improved. That's because the composition of Ca(OH)2 was mass-produced at early-ages.

  • PDF

Experiment Study on the Improvement of the Early-Age Strength of Fly Ash Concrete Using CSA (CSA를 사용한 플라이애시 콘크리트의 초기강도 개선을 위한 실험연구)

  • Park, Ji-Sun;Jeon, Chan-Soo
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.687-694
    • /
    • 2013
  • This study was performed with an aim to improve the early-age strength of concrete containing fly ash, which is known to increase the long-age strength of concrete, reduce drying shrinkage, and enhance water tightness. The composition was partially substituted with calcium sulfoaluminate (CSA), from which ettringite is actively produced, in the early stages of hydration to verify its effect on improving the early-age strength and to determine the optimal mixing ratio. For this purpose, up to 30 % of the cement weight was substituted with fly ash, and the amount of CSA substitution was 8% of the fly ash weight. The mixtures were then fabricated into concrete specimens for compressive strength measurement and analysis of the correlation between the hydration products and the compressive strength.

Evaluation of Self-Healing Performance Using Hydration Model of Portland Cement and Clinker (포틀랜드시멘트와 클링커의 수화모델을 이용한 자기치유 성능평가)

  • Choi, Sang-Hyeon;Park, Byoung-Sun;Cha, Soo-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.81-87
    • /
    • 2020
  • Crack control is essential to increase the durability of concrete significantly. Healing of crack can be controlled by rehydration of unreacted clinkers at the crack surface. In this paper, by comparing the results of isothermal calorimetry test and regression analysis, the Parrot & Killoh's cement hydration model was verified and clink er hydration model was proposed. The composition and quantification of hydration products were simulated by combining kinematic hydration model and thermodynamic model. Hydration simulation was conducted using the verified and proposed hydration model, and the simulation was performed by the substitution rate of clink er. The type and quantity of the final hydration product and healing product were predicted and, in addition, the optimal cementitious material of self-healing concrete was selected using the proposed hydration model.

Investigation of bone formation using calcium phosphate glass cement in beagle dogs

  • Lee, Seung-Bum;Jung, Ui-Won;Choi, Youn-A;Jamiyandorj, Otgonbold;Kim, Chang-Sung;Lee, Yong-Keun;Chai, Jung-Kiu;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.3
    • /
    • pp.125-131
    • /
    • 2010
  • Purpose: Among available biomaterials, bioceramics have drawn special interest due to their bioactivity and the possibility of tailoring their composition. The degradation rate and formulation of bioceramics can be altered to mimic the compositions of the mineral phase of bone. The aim of this study was to investigate the bone formation effect of amorphous calcium phosphate glass cement (CPGC) synthesized by a melting and quenching process. Methods: In five male beagle dogs, $4{\times}4$ mm 1-wall intrabony defects were created bilaterally at the mesial or distal aspect of the mandibular second and fourth premolars. Each of the four defects was divided according to graft materials: CPGC with collagen membrane (CM), biphasic calcium phosphate (BCP) with CM, CM alone, or a surgical flap operation only. The dogs were sacrificed 8 weeks post-surgery, and block sections of the defects were collected for histologic and histometric analysis. Results: There were significant differences in bone formation and cementum regeneration between the experimental and control groups. In particular, the CPGC and BCP groups showed greater bone formation than the CM and control groups. Conclusions: In conclusion, CPGC was replaced rapidly with an abundant volume of new bone; CPGC also contributed slightly to regeneration of the periodontal apparatus.

An experimental study on the low temperature melting treatment of waste asbestos for using (폐석면의 활용을 위한 저온 용융처리에 대한 실험적 연구)

  • Song, Tae Hyeob;Kim, Young Hun;Park, Ji Sun;Lee, Sea Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.83-90
    • /
    • 2010
  • As a reinforced fabric, asbestos has been utilized as a fire-resistant material as it has a superior flexural stiffness and heat resistance up to $1500^{\circ}C$. However, due to its harmfulness, its use has been prohibited recently and the even the installed asbestos materials are being repaired or supplemented if there is a concern about flying. Asbestos is mainly used for construction panels as a reinforced fabric and coating materials to ensure the fire-resistance of steel frames. Asbestos was used as fire-resistant materials for steel frames until 1991 and then prohibited as Act on Industrial Safety and Health limits the concentration of asbestos in the air. Classified as a designated waste according to Act on Waste Control, asbestos must be buried if there is no possibility of flying (panel-type materials) or cement-solidified and then buried if there is a possibility of flying (spray coating material) In general, it is required that a new waste landfill include a certain landfill facility for designated waste, but in reality there is an absolute storage of landfill facilities for designated waste as they only install facilities of the size required by the regulations. This could result in the 2nd environmental pollution as they cannot process asbestos wastes which will be generated in large volume in the future. This study explores a method that melts asbestos wastes at $700^{\circ}C$ rather than cement-solidifying the waste asbestos from construction sites, especially asbestos-containing spray coating. The study results showed that there was no change in the composition and shape even though asbestos wastes was melted at $1300^{\circ}C$, but there was a change for the specimen which was process in advance for low temperature melting and then melt at $900^{\circ}C$.

  • PDF

Evaluation of TDF ash as a Mineral Filler in Asphalt Concrete (TDF ash를 채움재로 사용한 아스팔트 콘크리트 물성 평가)

  • Choi, MinJu;Lee, JaeJun;Kim, HyeokJung
    • International Journal of Highway Engineering
    • /
    • v.18 no.4
    • /
    • pp.29-35
    • /
    • 2016
  • PURPOSES : The new waste management policy of South Korea encourages the recycling of waste materials. One material being recycled currently is tire-derived fuel (TDF) ash. TDF is composed of shredded scrap tires and is used as fuel in power plants and industrials plants, resulting in TDF ash, which has a chemical composition similar to that of the fly ash produced from coal. The purpose of this study was to evaluate the properties of an asphalt concrete mix that used TDF ash as the mineral filler. METHODS : The properties of the asphalt concrete were evaluated for different mineral filler types and contents using various measurement techniques. The fundamental physical properties of the asphalt concrete specimens such as their gradation and antistripping characteristics were measured in accordance with the KS F 3501 standard. The Marshall stability test was performed to measure the maximum load that could be supported by the specimens. The wheel tracking test was used to evaluate the rutting resistance. To investigate the moisture susceptibility of the specimens, dynamic immersion and tensile strength ratio (TSR) measurements were performed. RESULTS : The test results showed that the asphalt concrete containing TDF ash satisfied all the criteria listed in the Guide for Production and Construction of Asphalt Mixtures (Ministry of Land, Infrastructure and Transport, South Korea). In addition, TDF ash exhibited better performance than that of portland cement. The Marshall stability of the asphalt concrete with TDF ash was higher than 7500 N. Further, its dynamic stability was also higher than that listed in the guide. The results of the dynamic water immersion and the TSR showed that TDF ash shows better moisture resistance than does portland cement. CONCLUSIONS : TDF ash can be effectively recycled by being used as a mineral filler in asphalt, as it exhibits desirable physical properties. The optimal TDF ash content in asphalt concrete based on this study was determined to be 5%. In future works, the research team will compare the characteristics of asphalt concrete as function of the mineral filler types.

Identification of Alkali Reactivity of Natural Aggregates by Application of a Rapid Method (촉진시험법을 이용한 하천골재의 알칼리 반응성 판정)

  • Yang, Dong-Yoon;Lee, Chang-Bum
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.175-183
    • /
    • 1997
  • The concrete structure can be easily damaged due to alkali-aggregates reaction. There are several methods to identify alkali reactivity of aggregates. The most reliable method is mortar-bar test, but it takes 3 to 12 months for whole test. The authors applied "rapid method" which takes only 7 days for this test. The result of this rapid method follows; expansion ratio of mortar bar for natural aggregates taken at the Youngsan River ranges from 0.197 to 0.489%, but that from Changseong Lake has low expansion ratio of 0.147%, which is below the limit of allowance, 0.168%. Those from the Seomjin River range from 0.173 to 0.22%, and those from the Keum River range from 0.078% to 0.111%. In the case of higher expansion ratio than 0.168%, aggregates must be used with cement containing low alkali content or adding material consuming the alkali content of cement, for example, fly ash and silica fume, etc.. Most of natural aggregates in Cheolla area have no problem in physical properties, particularly the abrasion ratio is below 40%, the limit of allowance. The natural aggregate from Cheolla area consists mostly of gneiss, granite and volcanic rocks. The major alkali reactive materials are quartz mineral with undulatory extinction in gneiss and granite, and amorphous silica in volcanic rocks. Even if a certain aggregate consists of the same kind of rocks and has similar rock composition each other, content of alkali reactivity material can be various, because rock formation is locally different according to temperature and pressure. Therefore every rock type must be physically and chemically identified before using for aggregates.

  • PDF

Application Properties of Slag Concrete in Winter Season (슬래그 활용 콘크리트의 동절기 적용 성능 평가)

  • Yoo, Jo-Hyeong;Kim, Woo-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.52-58
    • /
    • 2017
  • Concrete made with ground granulated blast-furnace slag(GGBS) has many advantage, including improved durability, workability and economic benefits. GGBS concrete is that its strength development is considerably slower under standard $20^{\circ}C$ curing conditions than that of portland cement concrete, although the ultimate strength is higher for same water-binder ratio. GGBS is not therefore used in application where high early age strength is required. In this study, to overcome the limitation of the initial strength decrease due to the use of slag, the slag substitution rate was changed to 30% under the low temperature curing temperature condition and the slag used concrete composition with the same or higher strength performance as OPC(Ordinary Portland Cement).