• 제목/요약/키워드: cement binder

검색결과 625건 처리시간 0.022초

결합재 종류 및 치환율 변화가 순환잔골재 사용 고로슬래그 모르타르의 품질에 미치는 영향 (Effect of Binder Types and Replacement ratio on the Properties of Blast Slag Mortar Using the Recycled Fine Aggregates)

  • 풍해동;박경택;백대현;김대건;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 1부
    • /
    • pp.77-78
    • /
    • 2011
  • This study is analysis of effect of binder types and replacement ratio on the properties of blast furnace slag mortar using the recycled fine aggregates. The results of the study were was follows. Compressive strength was increased according to an increase in replacement ratio of fine particle cement and gypsum. Absorption was reduced according to an increase in replacement ratio of fine particle cement and recycled aggregate fine powder.

  • PDF

Effect of temperature on the behavior of self-compacting concretes and their durability

  • Salhi, M.;Li, A.;Ghrici, M.;Bliard, C.
    • Advances in concrete construction
    • /
    • 제7권4호
    • /
    • pp.277-288
    • /
    • 2019
  • The formulation of self-compacting concretes (SCC) and the study of their properties at the laboratory level were currently well mastered. The aim of this work is to characterize SCC under hot climatic conditions and their effects on the properties of fresh and hardened SCC. Particularly, the effect of the initial wet curing time on the mechanical behavior such as the compressive strength and the durability of the SCCs (acid and sulfate attack) as well as the microstructure of SCCs mixtures. In this study, we used two types of cement, Portland cement and slag cement, three water/binder (W/B) ratio (0.32, 0.38 and 0.44) and five curing modes. The obtained results shows that the compressive strength is strongly influenced by the curing methods, 7-days of curing in the water and then followed by a maturing in a hot climate was the optimal duration for the development of a better compressive strength, regardless of the type of binder and the W/B ratio.

폴리에스터 폴리머 콘크리트의 워커빌리티 특성 (Workability Characteristics of Polyester Polymer Concrete)

  • 연규석;김광우;이봉학
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1991년도 봄 학술발표회 논문집
    • /
    • pp.87-92
    • /
    • 1991
  • Since the material property of binder in polyester polymer concrete has a viscous mechanism, the workability of polyester polymer concrete mixture showed different characteristics from that of cement concretes. Therefore, this study was devised to evaluate workability characteristics of polyester polymer concrete using slump and flow tests. Study results showed that the test temperature and ST/UP ratio were the most dominantly affecting factor on the viscosity of binder, and viscosity of the binder was strongly correlated with the workability of polyester polymer concrete mixture.

  • PDF

Strength properties of lime stabilized and fibre reinforced residual soil

  • Okonta, Felix N.;Nxumalo, Sinenkosi P.
    • Geomechanics and Engineering
    • /
    • 제28권1호
    • /
    • pp.35-48
    • /
    • 2022
  • The effect of discrete polypropylene fibre reinforcement on shear strength parameters, tensile properties and isotropic index of stabilized compacted residual subgrade was investigated. Composites of compacted subgrade were developed from polypropylene fibre dosage of 0%, 1%, 2.5% and 4% and 3% cement binder. Saturated compacted soil benefited from incremental fibre dosage, the mobilized friction coefficient increased to a maximum at 2.5% fibre dosage from 0.41 to 0.58 and the contribution due to further increase in fibre dosage was marginal. Binder stabilization increased the degree of isotropy for unreinforced soil at lower fibre dosage of 1% and then decreased with higher fibre dosage. Saturation of 3% binder stabilized soil decreased the soil friction angle and the degree of isotropy for both unstabilized and binder stabilized soil increased with fibre dosage. The maximum tensile stress of 3% binder stabilized fibre reinforced residual soil was 3-fold that of 3% binder stabilized unreinforced soil. The difference in computed and measured maximum tensile and tangential stress decreased with increase in fibre dosage and degree of stabilization and polypropylene fibre reinforced soil met local and international criteria for road construction subgrade.

자연마섬유보강 비소성 무기결합재 다공성 콘크리트의 공극률, 압축강도 및 동결융해저항성 평가 (Void Ratio, Compressive Strength and Freezing and Thawing Resistance of Natural Jute Fiber Reinforced Non-Sintering Inorganic Binder Porous Concrete)

  • 김황희;김춘수;전지홍;박찬기
    • 한국농공학회논문집
    • /
    • 제57권2호
    • /
    • pp.67-73
    • /
    • 2015
  • This study evaluated the effects of fibers on the void ratio, compressive strength and repeated freezing and thawing resistance of porous vegetation concrete with binder type (non-sintering inorganic binder and blast furnace slag cement) and natural jute fiber volume fraction (0.0 %, 0.1 % and 0.2 %). The natural jute fiber volume fraction affected the void ratio, compressive strength and repeated freezing and thawing resistance. Added of natural jute fiber resulted in improved properties of the void ratio, compressive strength and freezing and thawing resistance. Also, the both compressive strength and freezing and thawing resistance increased with natural jute fiber volume fraction up to 0.1 % and then decreased with fiber volume fraction at 0.2 %.

기상재해 대응 긴급보수용 패브릭 콘크리트 혼합물의 역학적 특성 및 내구성능 평가 (Evaluation of Mechanical Properties and Durability of Fabric Concrete Binder for Emergency Repair)

  • 전상민;조성문;오리온;김황희;차상선;박찬기
    • 한국농공학회논문집
    • /
    • 제62권4호
    • /
    • pp.23-31
    • /
    • 2020
  • Recently, meteorological disasters have been increasing by climate change, excessive rainfall, and landslide. The purpose is to develop new fabric concrete that can prevent and recover from damages because some of areas are vulnerable to meteorological disaster. Specifically, this technology can minimize time and space constraint when repairing the concrete structure and installing a formwork. The structure of fabric concrete is a mixture of fabric concrete and a high-speed hardened cement, Silica sand, wollastonite mineral fiber, fabric material and waterproof PVC fabric. In this study, the ratio of mechanical properties and durability of the fabric concrete mixture was evaluated by deriving the binder: silica sand mix ratio of the fabric concrete mixture and substituting part of the cement amount with wollastonite mineral fiber. Best binder in performance evaluation: Silica sand mix ratio is 6: 4 and the target mechanical performance and durability are the best when over 15% wollastonite binder is replaced by silicate mineral fiber.

하수관거 보수용 CAC 모르타르 성능평가에 대한 실험적 연구 (An Experimental Study on Evaluation of Repair Mortars with CAC (Calcium Aluminate Cement) for Sewer Pipe)

  • 정지승;강원대
    • 한국안전학회지
    • /
    • 제27권4호
    • /
    • pp.68-75
    • /
    • 2012
  • The biogenic corrosion of mortars adopted in sewage repair by sulfuric acid-producing bacteria was considered in this paper. Calcium aluminate cement (CAC) was known to resist microbiologically-induced corrosion significantly better than portland and blended portland cement.In this study, CAC as well portland cement mortars were tested as main binder to evaluate the corrosion resistance by the chemical immersion test. Replacement ratios of CAC were changed as 0, 20, 40, 50, 60% of OPC binder and 0, 2, 4, 6% of EVA(Ethylene Vinyl Acetate) were also adopted to increase properties of CAC repair mortars in sewage application. Setting time, compressive strength, acid resistance and adhesive strength were measured for various experiments. As a results of the experiments, the proper formulation of repair mortars was found at 40% of CAC and 4% of EVA. Finally, the CAC mortars adopted in field sewer pipe and were demonstrated to superior in adhesion and workability.

노후 저수지 보강을 위한 환경 친화적 그라우팅 주입재 적용에 관한 기초연구 (A Fundamental Study on Application Eco Friendly Grouting Material for Old Aged Reserve Reinforcement)

  • 송상훤;전기표;임양현;서세관
    • 한국농촌건축학회논문집
    • /
    • 제21권2호
    • /
    • pp.35-42
    • /
    • 2019
  • There are 17,427 reservoirs in Korea, of which about 96% were built before the mid 1980s. Therefore, aging is severe and reinforcement are necessary. In addition, aged reservoirs, which are more than 50 years old, account for 70% of the total. Therefore, there is a problem such as the collapse of the reservoir and the decrease of the storage capacity due to progress of aging with time. The grouting method using cement is mainly used as maintenance and reinforcement method of old reservoir. However, the grouting method using cement has engineering and environmental problems. In order to solve the engineering and environmental problems of cement grouting method, an eco-friendly grouting material was developed that mixes circular resource grouting binder, high molar ratio sodium silicate and colloidal silica. The engineering and environmental properties of the developed injection materials were evaluated by conducting gel time, homo-gel strength, sea water resistance test and environmental stability evaluation. Also, examined the possibility of replacing OPC existing aged reservoir reinforcement methods. As a result, it was found out that it was better than the conventional cement method in terms of engineering and environment. However, since this study is the result of laboratory test, it is necessary of verify the application at field of aged reservoir.

황토결합재를 이용한 콘크리트의 수화열과 수축특성 (Hydration Heat and Shrinkage of Concrete Using Hwangtoh Binder)

  • 강성수;이성로;황혜주;조민철
    • 콘크리트학회논문집
    • /
    • 제20권5호
    • /
    • pp.549-555
    • /
    • 2008
  • 본 연구는 비활성 황토결합재로 시멘트를 대체함으로써 시멘트의 수화 반응 등에 의한 콘크리트 내부 발열과 수축 특성을 연구하였다. 먼저 재료의 분석을 토대로 압축강도, 슬럼프, 공기량을 살펴보았다. 소형시편과 대형시편을 제작하였고, 보통콘크리트 (OPC)와 황토콘크리트 (HBC)의 수화열, 수축을 측정하여 비교 평가하였다. 황토결합재는 압축강도가 $18{\sim}33\;MPa$로 보통강도 콘크리트의 강도를 발현하였고, 유동성도 확보되는 결과를 보였다. 소형시편에서는 HPC는 OPC에 비해 양생시 내부의 최고온도가 약 1/4 정도로 낮게 나타나고 수축 역시 HBC는 OPC에 비하여 감소하였다. 대형시편에서도 HBC는 OPC에 비해 내부온도가 낮게 나타났으며 수축 역시 60일 기점으로 OPC의 상대적으로 매우 낮은 수축률을 보였다. 따라서 비활성 황토 결합재는 일정강도와 유동성을 확보할 수 있는 재료이며 친환경적 재료이다. 수화열과 수축에 있어 내구성능을 확보하는데 긍정적으로 사료된다.

콘크리트 CO2 저감을 고려한 혼화재 및 단위 결합재 양의 설계 (Design of Supplementary Cementitious Materials and Unit Content of Binder for Reducing CO2 Emission of Concrete)

  • 양근혁;문재흠
    • 콘크리트학회논문집
    • /
    • 제24권5호
    • /
    • pp.597-604
    • /
    • 2012
  • 이 연구에서는 2464개의 시멘트 콘크리트 배합과 776개의 혼화재가 치환된 혼합 시멘트 콘크리트 배합을 포함하는 실험 데이터베이스를 이용하여 콘크리트 압축강도 및 혼화재 치환율에 따른 콘크리트 $CO_2$ 배출량을 평가하였다. 국내 생애주기 데이터 목록에 기반한 콘크리트 $CO_2$ 평가에서 고려된 시스템은 요람에서 현장 콘크리트 타설 전까지로서 구성재료, 운반 및 생산단계를 포함하고 있다. 콘크리트의 성능 효율성 지표로서 결합재 지수와 $CO_2$ 지수가 분석되었으며, 콘크리트 $CO_2$ 배출량을 평가하기 위한 단순 식이 각 혼화재의 치환비 및 콘크리트 압축강도의 함수로서 제시되었다. 따라서 이 제안된 모델은 목표 압축강도 및 목표 시멘트 콘크리트 대비 $CO_2$ 배출 저감율을 만족하는 콘크리트 배합설계를 위하여 단위 결합재 양 및 혼화재 종류와 치환비를 결정하는 데 가이드 라인으로서 유용하게 이용될 수 있을 것으로 기대된다.