• Title/Summary/Keyword: cement binder

Search Result 631, Processing Time 0.023 seconds

Characteristics of Solidification/Carbonation in the Heavy-Metal-Contaminated Sediment Treated by MgO-Based Binder (MgO 기반 고화제를 이용하여 처리한 중금속 오염 준설토의 고형화/탄산염화 특성)

  • Hwang, Kyung-Yup;Seo, Jeong-Yun;Phan, Hoang Quang Huy;Ahn, Jun-Young;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.102-111
    • /
    • 2013
  • A novel MgO-based binder was developed and applied to treat the anoxic sediment that was collected from Seonakdong river, Korea and was contaminated with heavy metals. The treated sediment was evaluated by measuring compressive strength, expansion, leaching of heavy metals and storage characteristics for $CO_2$. Initially, an optimal blending ratio of lime (L)/fly ash (FA)/blast furnace slag (BFS) that was to be mixed with MgO was screened to be $L_{0.3}-FA_{0.1}-BFS_{0.6}$. Long-term strengths of the sediments that were treated by various mixtures of MgO and $L_{0.3}-FA_{0.1}-BFS_{0.6}$ were then evaluated and the blending ratios between 4 : 6 and 6 : 4 were found optimal, which yielded a compressive strength of 4.09 MPa. On this basis, the optimal MgO-based binder was selected to be a 5 : 5 mixture of MgO and $L_{0.3}-FA_{0.1}-BFS_{0.6}$. The good performance of the MgO-based binder was believed to be due to the formation of Mg $(OH)_2$, which filled the micropores and also increased the density of the solidified matrices. The MgO-based binder exhibited an average stabilizing capacities for heavy metals of 92.9%, which was similar to or higher than that of Portland cement. It was found that 69.1 kg of carbon dioxide could be sequestrated after 365 days of curing when treating a ton of anoxic sediments.

A Study on Environmentally Friendly Soil Pavement Materials Using Weathered Soil and Inorganic Binder (화강풍화토와 무기질 결합재를 활용한 친환경 흙포장에 관한 연구)

  • Jung, Hyuksang;Jang, Cheolho;An, Byungjae;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.4
    • /
    • pp.25-31
    • /
    • 2009
  • In this study, the problem of existing soil pavement is a long-term durability lack and crack occurrence. It complements in order to develop the environmental soil pavement material which composites readily blended mineral binder of liquid and decomposed granite soils. It was estimated optimal mixture proportion for unconfined compressive strength, permeability, $Cr^{6+}$detection test, SEM test with age, freezing and thawing test. It resulted mixture proportion of powder types mineral binder for rates of cement : fly ash : plaster was optimal rates of 50 : 33 : 7, and $Cr^{6+}$detection test as a result was a slight production. SEM test with 3days as a result was made Ettringite. It was found that this material was early development of early-strength for chemical. This study indicated that it will execute field appliciability Evaluation test, examination of soil pavement method with decomposed granite soils and mineral binder.

  • PDF

Durability of Ultrarapid-Hardening Polymer-Modified Concretes Using Metakaolin (메타카올린을 혼입한 초속경 폴리머 시멘트 콘크리트의 내구특성)

  • Yoo, Tae-Ho;Chang, Byung-Ha;Hong, Hyun-Pyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.31-38
    • /
    • 2018
  • The effects of polymer-binder ratio and metakaolin content on the properties of ultrarapid-hardening polymer-modified concretes using metakaolin are examined. As a result, regardless of the metakaolin content, the flexural, compressive and adhesion in tension strength of the ultrarapid-hardening polymer-modified concretes tend to increase with increasing polymer-binder ratio. Regardless of the polymer-binder ratio, the strengths of the ultrarapid-hardening polymer-modified concretes increase with increasing metakaolin content, and reaches a maximum at metakaolin content of 5%. The water absorption, carbonation depth and resistance of chloride ion penetration of the ultrarapid-hardening polymer-modified concretes decrease with increasing polymer-binder ratio. The resistance of freezing and thawing improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of polymer dispersion.

Sulfate and Freeze-thaw Resistance Characteristic of Multi-component Cement Concrete Considering Marine Environment (해양환경을 고려한 다성분계 시멘트 콘크리트의 황산염 및 동결융해 저항 특성)

  • Kim, Myung-Sik;Beak, Dong-Il;Kang, Jun-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.26-32
    • /
    • 2012
  • Recently, concrete using multicomponent blended cement has been required to increase the freeze-thaw and sulfate resistances of concrete structures exposed to a marine environment. Thus, the purpose of this study was to propose the use of concrete containing multicomponent blended cement as one of the alternatives for concrete structures exposed to a marine environment. For this purpose, batches of concrete containing ordinary portland cement (OPC), binary blended cement (OPC-G, G: ground granulated blast slag), ternary blended cement (OPC-GF, F: fly ash), and quaternary blended cement (OPC-GFM, M: mata-kaolin) were made using a water-binder ratio of 50%. Then, the durability levels, including thesulfate and freeze-thaw resistances, were estimated for concrete samples containing OPC, OPC-G, OPC-GF, and OPC-GFM. It was observed from the tests that the durability levels of the concrete samples containing OPC-G and OPC-GF were found to be much better than that of the concrete containing OPC. The optimum mixing proportions were a40% replacement ratio of ground granulated blast slag for the binary blended cement and a30% replacement ratio of ground granulated blast slag and 10% fly ash for the ternary blended cement.

Determination of mortar strength using stone dust as a partially replaced material for cement and sand

  • Muhit, Imrose B.;Raihan, Muhammad T.;Nuruzzaman, Md.
    • Advances in concrete construction
    • /
    • v.2 no.4
    • /
    • pp.249-259
    • /
    • 2014
  • Mortar is a masonry product which is matrix of concrete. It consists of binder and fine aggregate and moreover, it is an essential associate in any reinforced structural construction. The strength of mortar is a special concern to the engineer because mortar is responsible to give protection in the outer part of the structure as well as at a brick joint in masonry wall system. The purpose of this research is to investigate the compressive strength and tensile strength of mortar, which are important mechanical properties, by replacing the cement and sand by stone dust. Moreover, to minimize the increasing demand of cement and sand, checking of appropriateness of stone dust as a construction material is necessary to ensure both solid waste minimization and recovery by exchanging stone dust with cement and sand. Stone dust passing by No. 200 sieve, is used as cement replacing material and retained by No. 100 sieve is used for sand replacement. Sand was replaced by stone dust of 15%, 20%, 25%, 30%, 35%, 40%, 45% and 50% by weight of sand while cement was replaced by stone dust of 3%, 5%, and 7% by weight of cement. Test result indicates that, compressive strength of specimen mix with 35% of sand replacing stone dust and 3% of cement replacing stone dust increases 21.33% and 22.76% respectively than the normal mortar specimen at 7 and 28 days while for tensile it increases up to 13.47%. At the end, optimum dose was selected and crack analysis as well as discussion also included.

Determination of Water-to-Binder Ratios on the Equivalent Compressive Strength of Concrete with Supplementary Cementitious Materials (혼화재 치환 콘크리트의 등가 압축강도에 대한 물-결합재비의 결정)

  • Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.687-693
    • /
    • 2015
  • The present study proposed a k-value to determine the water-to-binder ratio of concrete using fly ash (FA) or ground granulated blast-furnace slag (GGBS) as a partial replacement of ordinary portland cement (OPC) with regard to an equivalent strength of OPC concrete. From the regression analysis using an extensive database including 7076 concrete mixes, k-values were determined for various water-to-binder ratios when the replacement ratio of OPC by the addition of FA or GGBS were below 50%. For deriving an equation to identify k-value, the relationship of concrete compressive strength and water-to-binder ratio was generalized by an exponential function. In general, k-values decreased with the increases in the addition of FA or GGBS for replacement of OPC and water-to-binder ratio. The rate in decreasing k-value against water-to-binder ratio was marginally affected by the addition of FA or GGBS, although a higher k-value was commonly obtained for GGBS concrete than for FA concrete at the same water-to-binder ratio. Consequently, the determined k-values were simplified as a function of water-to-binder ratio and the addition ratio of FA or GGBS as replacement of OPC.

The Fundamental Characteristics for Mix Proportion of Multi-Component Cement (배합비에 따른 다성분계 시멘트의 기초특성)

  • Kim, Tae-Wan;Jeon, Jae-Woo;Seo, Min-A;Jo, Hyeon-Hyeong;Bae, Su-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.66-74
    • /
    • 2016
  • The aim of this research work is to investigate the mix proportion of multi-component cement incorporating ground granulated blast furnace(GGBFS), fly ash(FA) and silica fume(SF) as an addition to cement in ternary and quaternary combinations. The water-binder ratio was 0.45. In this study, 50% and 60% replacement ratios of mineral admixture to OPC was used, while series of combination of 20~40% GGBFS, 5~35% FA and 0~15% SF binder were used for fundamental characteristics tests. This study concern the GGBFS/FA ratio and SF contents of multi-component cement including the compressive strength, water absorptions, ultrasonic pulse velocity(UPV), drying shrinkage and X-ray diffraction(XRD) analysises. The results show that the addition of SF can reduce the water absorption and increase the compressive strength, UPV and drying shrinkage. These developments in the compressive strength, UPV and water absorption can be attributed to the fact that increase in the SF content tends basically to consume the calcium hydroxide crystals released from the hydration process leading to the formation of further CSH(calcium silicate hydrate). The strength, water absorption and UPV increases with an increase in GGBFS/FA ratios for a each SF contents. The relationship between GGBFS/FA ratios and compressive strength, water absorption, UPV is close to linear. It was found that the GGBFS/FA ratio and SF contents is the key factor governing the fundamental properties of multi-component cement.

A Study on Chloride Binding Capacity of Various Blended Concretes at Early Age (초기재령에서 각종 혼합콘크리트의 염소이온 고정화능력에 관한 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.133-142
    • /
    • 2008
  • This paper studies the early-aged chloride binding capacity of various blended concretes including OPC(ordinary Portland cement), PFA(pulversied fly ash), GGBFS(ground granulated blast furnace slag) and SF(silica fume) cement paste. Cement pastes with 0.4 of a free water/binder ratio were cast with chloride admixed in mixing water, which ranged from 0.1 to 3.0% by weight of cement and different replacement ratios for the PFA, GGBFS and SF were used. The content of chloride in each paste was measured using water extraction method after 7 days curing. It was found that the chloride binding capacity strongly depends on binder type, replacement ratio and total chloride content. An increase in total chloride results in a decrease in the chloride binding, because of the restriction of the binding capacity of cement matrix. For the pastes containing maximum level of PFA(30%) and GGBFS(60%) replacement in this study, the chloride binding capacity was lower than those of OPC paste, and an increase in SF resulted in decreased chloride binding, which are ascribed to a latent hydration of pozzolanic materials and a fall in the pH of the pore solution, respectively. The chloride binding capacity at 7 days shows that the order of the resistance to chloride-induced corrosion is 30%PFA > 10%SF > 60%GGBFS > OPC, when chlorides are internally intruded in concrete. In addition, it is found that the binding behaviour of all binders are well described by both the Langmuir and Freundlich isotherms.

Physical Properties of the Hardened Loess Using Natural Binding Materials (천연 결합재를 사용한 황토경화체의 물성에 대한 연구)

  • Kim, Jin Seok;Oh, Young Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.44-51
    • /
    • 2012
  • In this study, hardened loess bodies, which did not compose of cement or any chemical binder, were made and tested to evaluate the physical properties such as slump, air content, and compressive strength. Addition of a natural binding material to mixture of loess and lime showed better performance in physical properties. However a lime among natural binding materials is considered as a superior binder to improve the properties of the hardened bodies. According to the experimental results, mixing proportion with 45% of W/B ratio, $285kg/m^3$ of water content, and 60% lime substitution ratio was recommended to acquire the good performance of physical properties for the hardened loess bodies.

Influence of Calcium on the Formation of Aluminosilicate Inorganic Polymer Binder

  • Ahn, Sangwook;Choi, Youngkue;Shin, Byeongkil;Lee, Jungwoo;Lee, Heesoo;Hui, Kwunnam
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.362-366
    • /
    • 2011
  • Aluminosilicate inorganic polymer binder has been studied as an alternative to ordinary Portland cement due to its higher physical properties, chemical resistance and thermal resistance. This study has been carried out in an attempt to understand the hardening characteristics of aluminosilicate binder by varying the content of calcium. Samples with four different ratios of Al, Si, and Ca were synthesized in this study with the Al:Si:Ca mol ratio being 1.00:1.85~1.98:0.29~2.12. Furthermore, an alkali silicate solution was prepared with the sodium hydroxide (NaOH) and sodium silicate (NaSi). The hardening characteristics of the specimens were analyzed using XRD, SEM, and TG/DTA. In addition, compressive strength and sintering time of specimens were measured as a function of calcium content. The results showed that the specimen containing 2.12 mol% calcium offered the highest compressive strength. However, the compressive strength of the specimen containing 0.26 mol% calcium was lower relative to the other specimens. The results displayed a distinct tendency that as more calcium was added to the inorganic polymer, setting time became shorter. When calcium was added to the inorganic polymer structure, a second phase was not formed, indicating that the addition of calcium does not affect the crystalline structure.