• Title/Summary/Keyword: cement binder

Search Result 631, Processing Time 0.026 seconds

A Study on the Application of Chemical Grouting Method for Aging Reservoir Reinforce According to the Change of Binder and Using Water (결합재 및 사용수 변화에 따른 노후저수지 보강용약액주입공법 적용에 관한 연구)

  • Song, Sang-Hwon;Seo, Se-Gwan
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.21 no.4
    • /
    • pp.45-52
    • /
    • 2019
  • Chemical grouting method is mainly used for construction of dams and reservoirs, stabilization and reinforcement of slopes, reinforcement of soft grounds such as embankments, dredging and landfills, the order of earthquake response method, and the reinforcement of structures. Recently, it is widely applied in construction sites such as highways, airfields, high-speed railways, subsea facilities, port construction works, tunnels, and subway works. As such, the demand for grouting continues to increase. The development of the grouting method was focused on increasing the strength of the ground, and the development of the chemical additives, the injection device, and the stirring device were mainly performed. But ordinary portland cement used for grouting is a product that consumes natural resources such as limestone, generates a large amount of greenhouse gases, consumes a large amount of energy sources, and it is time to develop products and new methods to replace them. In this study, Ordinary Portland Cement and New Grouting Binder (circulating fluidized bed boiler fly and blast furnace slag) were compared and analyzed by the following test. Homo-gel strength and homo-gel time, water quality analysis of the water used and soil contamination process tests of homo-gel samples were performed. In the case of NGB, when Using water is used as the reservoir water, the strength measured smaller than that of the other water. However, it shows about 2.5 times greater than the homo-gel compressive strength applied to OPC (7-day, reservoir water), so there is no problem with water quality when applied.

Microstructural, Mechanical, and Durability Related Similarities in Concretes Based on OPC and Alkali-Activated Slag Binders

  • Vance, Kirk;Aguayo, Matthew;Dakhane, Akash;Ravikumar, Deepak;Jain, Jitendra;Neithalath, Narayanan
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.4
    • /
    • pp.289-299
    • /
    • 2014
  • Alkali-activated slag concretes are being extensively researched because of its potential sustainability-related benefits. For such concretes to be implemented in large scale concrete applications such as infrastructural and building elements, it is essential to understand its early and long-term performance characteristics vis-a'-vis conventional ordinary portland cement (OPC) based concretes. This paper presents a comprehensive study of the property and performance features including early-age isothermal calorimetric response, compressive strength development with time, microstructural features such as the pore volume and representative pore size, and accelerated chloride transport resistance of OPC and alkali-activated binder systems. Slag mixtures activated using sodium silicate solution ($SiO_2$-to-$Na_2O$ ratio or $M_s$ of 1-2) to provide a total alkalinity of 0.05 ($Na_2O$-to-binder ratio) are compared with OPC mixtures with and without partial cement replacement with Class F fly ash (20 % by mass) or silica fume (6 % by mass). Major similarities are noted between these binder systems for: (1) calorimetric response with respect to the presence of features even though the locations and peaks vary based on $M_s$, (2) compressive strength and its development, (3) total porosity and pore size, and (4) rapid chloride permeability and non-steady state migration coefficients. Moreover, electrical impedance based circuit models are used to bring out the microstructural features (resistance of the connected pores, and capacitances of the solid phase and pore-solid interface) that are similar in conventional OPC and alkali-activated slag concretes. This study thus demonstrates that performance-equivalent alkali-activated slag systems that are more sustainable from energy and environmental standpoints can be proportioned.

The Effect of Blaine and SO3 Contents of OPC on Shotcrete Binder with Calcium Aluminate Accelerator (OPC의 분말도 및 SO3 함량이 시멘트 광물계 급결제를 사용한 숏크리트 결합재 물성에 미치는 영향)

  • Kang, Bong-Hee;Kim, Gyu-Yong;Choi, Jae-Won;Koo, Kyung-Mo;Hwang, Bong-Choon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.78-85
    • /
    • 2020
  • Shotcrete concrete is generally used in the form of ready-mixed concrete products using type I ordinary portland cement(hereinafter referred to as OPC) and about 5% of accelerator mixed separately in the field. In this study, we tested the effect of OPC fineness and SO3 content on a penetration resistance, compressive strength of binder for shotcrete using calcium aluminate type accerlerator. And we analysed hydrates and pore structure effects on mortar performance. In the future, it is expected to be useful for manufacturing optimized OPC as a binder for shotcrete.

The Effects of Na2CO3 on Early Strength of High Volume Slag Cement (대량치환 슬래그 시멘트의 초기강도에 미치는 Na2CO3의 영향)

  • Kim, Tae-Wan;Hahm, Hyung-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.349-356
    • /
    • 2016
  • This report presents the results of an investigation on the early strength development of pastes high volume slag cement (HVSC) activated with different concentration of sodium carbonate ($Na_2CO_3$). The ordinary Portland cement (OPC) was replaced by ground granulated blast furnace slag (GGBFS) from 50% to 90% by mass, the dry powders were blended before the paste mixing. The $Na_2CO_3$ was added at 0, 2, 4, 6, 8 and 10% by total binder (OPC+GGBFS) weight. A constant water-to-binder ratio (w/b)=0.45 was used for all mixtures. The research carried out the compressive strength, ultrasonic pulse velocity (UPV), water absorption and X-ray diffraction (XRD) analysis at early ages(1 and 3 days). The incase of mixtures, V5 (50% OPC + 50% GGBFS), V6 (40% OPC + 60% GGBFS) and V7 (30% OPC + 70% GGBFS) specimens with 6% $Na_2CO_3$, V8 (20% OPC + 80% GGBFS) and V9 (10% OPC + 90% GGBFS) specimens with 10% $Na_2CO_3$ showed the maximum strength development. The results of UPV and water absorption showed a similar tendency to the strength properties. The XRD analysis of specimens indicated that the hydration products formed in samples were CSH and calcite phases.

Experimental Study on the Applicability of Reactivity SiO2 Nano-Materials as Cement Composites (실리케이트계 반응성 나노소재의 시멘트 혼화재로써 적용 가능성에 대한 실험적 연구)

  • Kim, Won-Woo;Moon, Jae-Heum;Baek, Chul-Woo;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.529-536
    • /
    • 2021
  • In this study, nano-silica and nano-titanium were selected to determine the possibility of applying the binder to reactive nano materials. The basic characteristics of the nano material candidate group were reviewed. and the reactivity of nano materials was reviewed through K-value. The reactivity of the nano silicate materials was measured to be high. Therefore, as a final candidate group, nano silicate materials were selected. The finally selected reactive nano material was reviewed for its usability as a construction binder. The mechanical properties and unit weight of cement paste were reviewed using silica fume and blast furnace slag and nano materials. When cement composites with nano silicate materials, it was confirmed that it was effective in improving the mechanical performance and decrease the unit weight of cement composites.

The Hydration Heat of High Strength Concrete (고강도 콘크리트의 단열온도상승에 관한 실험적 연구)

  • 노재호;한정호;조일호;박연동;정재동;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.209-214
    • /
    • 1994
  • The heat of hydration of cement causes the intemal temperature rise at early age, particulay in massive concrete structures. As the results of the temperature rise and restraint condition, the thermal stress amy induce cracks in concrete. The prediction of the thermal stress is very important in design and consturction slages in order to control the cracks in mass concrete. In this study, the temperature rise of high strength concrete due to the heat of hydration is investigated. Test variables are type and content of binder. As the results, the temperature rise is imcreased with increasing cement content. However, the increament is decreased in higher cement comtnet range. Fly ash is effictive in the reduction of hydration heat.

  • PDF

Strength Development of Low Heat Portland Cement Concrete according of Substitution of Fly-ash in High Strength Range (플라이 애쉬 치환율에 따른 저열 포틀랜드 시멘트 콘크리트의 고강도 영역에서의 강도발현 특성)

  • Kim, Tae-Hong;Ha, Jae-Dam;Um, Tai-Sun;Lee, Jong-Ryul;Kwon, Young-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.603-606
    • /
    • 2005
  • Strength development of low heat portland cement(Type IV) concrete according of addition of fly-ash in high strength range is tested. In this study strength development according to water-binder ratio, strength development according to age, effect of fly ash are tested. This study tests effect of low heat portland cement in high strength range concrete and provide guide line concrete mix design for later study and construction.

  • PDF

An Experimental Study on the preparation of High Performance Concrete (고유동콘크리트의 제조에 관한 실험적 연구)

  • 최진만;윤재환;황세몽;용태형;이영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.39-44
    • /
    • 1993
  • The aim of this study is to develop High Performance Concrete, which can fill in every corner of forms without using any vibrators. In order to place concrete into reinforced members, concrete should have segregation resistance and high flowability. In this study, the binder of concrete, such as Ordinary Portland Cement, fly ash, and blast furnace slag, cement were mixed with the addition of superplasticizers and tested their flowability and segregation resistance using slump flow tester and L type flow tester. As a results, High Performance Concrete can be made using Portland blast furnace slag cement along with superplasticizers but the slump-loss of concrete is so large that measure should be made.

  • PDF

Chloride Transport Rate in Blended Concrete Depending on Different Test Methods

  • Balamurugan, Loganathan;Kim, Sang-Hyo;Ann, Ki-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.477-478
    • /
    • 2010
  • Concretes with binary blends of Portland cement, silica fume, fly ash and ground granulated blast furnace slag were produce to investigate their effects on compressive strength and chloride transport in rapid chloride permeability. Ten different mix of concrete with 0.45 water/binder were produced. Portland cement was replacedby: (i) 10%, 20%, 30% Fly ash (ii) 3%, 5%, 10% Silica Fume (iii) 20%, 40%, 60% GGBS. Compressive strength of concrete with the pozzolans is higher compared to that of the Portland cement concrete. The test results indicate the fly ash, silica fume, and ground granulated furnace slag greatly reduce the rapid chloride permeability of concrete. It was concluded that pozzolans are more effective to reduce chloride permeability of concrete.

  • PDF

An Experimental Study on the Compressive Strength for the Cement Mortar Contained Phosphogypsum and Kaolin as a Binder (인산부산석고와 카올린을 활용한 시멘트용 결합재의 콘크리트 모르터 압축강도 평가에 대한 실험적 연구)

  • Oh, Hong-Seob;Park, Jong-Tak;Lee, Ju-Won;Nam, Ki-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.263-264
    • /
    • 2010
  • In this study, respectively and furnaced kaolin at $900^{\circ}C$ was also manufactured into meta kaolin by air cooling and water cooling method. The chemical characteristic and mechanical properties of various type of blended cements contained above mentioned gypsum and meta kaolin materials analyzed and compared with those characteristics of cement matrix with silica fume. From the test, the cement mixed meta kaolin made in water cooling has more excellent quality than other material.

  • PDF