• 제목/요약/키워드: cellular signaling

검색결과 1,123건 처리시간 0.03초

BT(Bluetooth) IP에서의 핸드오프 지원 방안 (Handoff Scheme for BT(Bluetooth) IP)

  • 박홍성;정명순
    • 산업기술연구
    • /
    • 제21권A호
    • /
    • pp.65-71
    • /
    • 2001
  • In this paper, we propose handoff scheme for BT(Bluetooth) IP and define signaling for the handoff scheme. In local area, BT IP use the concept of Cellular IP and the operation property of Bluetooth system. In case of accessing external internet, use the concept of Mobile IP. IP-based Mobility of Bluetooth Terminal provides efficient and rapid mobility in local area and flexibility on the internet.

  • PDF

ROLE OF ERK1/2 IN 6-HYDROXYDOPAMINE-INDUCED APOPTOSIS IN SK-N-SH HUMAN NEUROBLASTOMA CELLS

  • Jin, Da-Qing;Kim, Jung-Ae
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.196.2-197
    • /
    • 2003
  • Parkinson's disease (PO) is a widespread neurodegenerative disorder. Even though PD has been studied in many aspects, it is still unknown the molecular signaling mechanisms linking reactive oxygen species (ROS) and neuronal apoptosis in PD. A better understanding of cellular mechanisms that occur in Parkinson's disease is essential for development of new therapies. In this study we investigated the signaling molecules involved in neuronal apoptosis induced by 6-hydroxydopamine (6-OHDA) in human SK-N-SH neuroblastoma cells as a model cellular system. (omitted)

  • PDF

Protective Effects of Changbudodam-tang on Cell Death Signals on the Bone Marrow-Derived Human Mesenchymal Stem Cells via Regulation of MKK7/JNK/c-Jun Signaling Pathway

  • Hee-Jae Yoon;Si-Yoon Cho;Hyeong-Geug Kim;Ji-Yeon Lee
    • 대한약침학회지
    • /
    • 제27권2호
    • /
    • pp.131-141
    • /
    • 2024
  • Objectives: Polycystic ovary syndrome (PCOS) is one of the most common disorders and it shows up to 20% prevalence in reproductive-aged women populations, but no cures are available to date. We aimed to investigate the protective effects of Changbudodam-tang (CBD) on cell death signaling pathways, inflammation, and oxidative stress observed in Bone-Marrow derived human mesenchymal stem cell (BM-hMSC) by means of PCOS therapeutics in the future. Methods: BM-hMSCs were applied with cell deaths and injuries. Apoptosis and pyroptosis signals were quenched with their related signaling pathways using quantitative PCR, Western blot, and fluorescence image analysis. Results: Our data clearly displayed hydrogen peroxide- and nigericin-treated cell death signaling pathways via regulations of mitochondrial integrity and interleukin (IL)-1β at the cellular levels (p < 0.01 or 0.001). We further observed that pre-treatment with CBD showed protective effects against oxidative stress by enhancement of antioxidant components at the cellular level, with respect to both protein and mRNA expression levels (p < 0.05, 0.01 or 0.001). The mechanisms of CBD were examined by Western blot analysis, and it showed anti-cell death, anti-inflammatory, and antioxidant effects via normalizations of the Jun N-terminal kinase/mitogen-activated protein kinase kinase 7/c-Jun signaling pathways. Conclusion: This study confirmed the pharmacological properties of CBD by regulation of cellular oxidation and the inflammation-provoked cell death condition of BM-hMSCs, which is mediated by the MKK7/JNK/c-Jun signaling pathway.

Multiple Roles of Peroxiredoxins in Inflammation

  • Knoops, Bernard;Argyropoulou, Vasiliki;Becker, Sarah;Ferte, Laura;Kuznetsova, Oksana
    • Molecules and Cells
    • /
    • 제39권1호
    • /
    • pp.60-64
    • /
    • 2016
  • Inflammation is a pathophysiological response to infection or tissue damage during which high levels of reactive oxygen and nitrogen species are produced by phagocytes to kill microorganisms. Reactive oxygen and nitrogen species serve also in the complex regulation of inflammatory processes. Recently, it has been proposed that peroxiredoxins may play key roles in innate immunity and inflammation. Indeed, peroxiredoxins are evolutionarily conserved peroxidases able to reduce, with high rate constants, hydrogen peroxide, alkyl hydroperoxides and peroxynitrite which are generated during inflammation. In this minireview, we point out different possible roles of peroxiredoxins during inflammatory processes such as cytoprotective enzymes against oxidative stress, modulators of redox signaling, and extracellular pathogen- or damage-associated molecular patterns. A better understanding of peroxiredoxin functions in inflammation could lead to the discovery of new therapeutic targets.

Multiple Roles of Phospholipase D in Growth Factor Signaling

  • Ryu, Sung-Ho
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.107-108
    • /
    • 2003
  • The epidermal growth factor (EGF) is an important signaling ligand for the mitogenesis of many cells. The EGF receptors use signaling molecule multicomplexes and dynamic protein networks for the transmission and amplification of the signals as well as for the regulation of the cellular responses. EGF signaling has been reported to be enhanced in various tumors by the overexpressed EGF receptor and/or the mediators such as phospholipase C-$\gamma$1(PLC$\gamma$1). (omitted)

  • PDF

Glucagon과 insulin이 glutathione 항상성에 미치는 영향: 세포신호전달체계 및 glutathione transport system의 역할 (Effects of Glucagon and Insulin on Glutathione Homeostasis: Role of Cellular Signaling Pathways and Glutathione Transport System)

  • 김봉희;오정민;윤강욱;김충현;김상겸
    • Environmental Analysis Health and Toxicology
    • /
    • 제22권3호
    • /
    • pp.227-233
    • /
    • 2007
  • It has been reported that hepatic glutathione (GSH) levels are decreased in diabetic patients, and glucagon increases hepatic efflux of GSH into blood. The signaling pathways responsible for mediating the glucagon effects on GSH efflux, however, are unknown. The signaling pathways involved in the regulation of GSH efflux in response to glucagon and insulin were examined in primary cultured rat hepatocytes. The GSH concentrations in the culture medium were markedly increased by the addition of glucagon, although cellular GSH levels are significantly decreased by glucagon. Insulin was also increased the GSH concentrations in the culture medium, but which is reflected in elevations of both cellular GSH and protein. Treatment of cells with 8-bromo-cAMP or dibutyryl-cAMP also resulted in elevation of the GSH concentrations in the culture medium. Pretreatment with H89, a selective inhibitor of protein kinase A, before glucagon addition markedly attenuated the glucagon effect. These results suggest that glucagon changes GSH homeostasis via elevation of GSH efflux, which may be responsible for decrease in hepatic GSH levels observed in diabetic condition. Furthermore, the present study implicates cAMP and protein kinase A in mediating the effect of glucagon on GSH efflux in primary cultured rat hepatocytes.

Therapeutic Potentiality of Celtis choseniana Nakai on Androgenic Alopecia through Repression of Androgen Action and Modulation of Wnt/β-catenin Signaling

  • Hui-Ju Lee;Geum-Lan Hong;Kyung-Hyun Kim;Yae-Ji Kim;Tae-Won Kim;Ju-Young Jung
    • Natural Product Sciences
    • /
    • 제29권1호
    • /
    • pp.31-37
    • /
    • 2023
  • In this study, we investigated the efficacy of Celtis choseniana Nakai (C. choseniana) as complementary herbal medicine to ameliorate androgenic alopecia (AGA). The effects of C. choseniana on AGA were evaluated using testosterone propionate-induced AGA mouse model and dihydrotestosterone-treated human hair follicle dermal papilla cells. In vivo, C. choseniana treatment deactivated androgen signaling by reducing the concentration of serum dihydrotestosterone level and expressions of 5α-reductase 2 and androgen receptor. Next, C. choseniana treatment increased the hair regrowth rate. Histological studies demonstrated that C. choseniana induced the anagen phase in testosterone propionate-induced AGA mouse model. Cellular proliferation was promoted by C. choseniana treatment via increasing the expression of proliferation factors, such as proliferating cell nuclear antigen and cyclin D1. Furthermore, C. choseniana treatment increased the expression of proteins related to the Wnt/β-catenin signaling pathway. In addition, dickkopf-1, a Wnt inhibitor, was downregulated with C. choseniana treatment. Likewise, C. choseniana treatment promoted cellular proliferation in vitro. This study demonstrated the inhibitory effect of C. choseniana on androgen-induced AGA. Moreover, C. choseniana induced activation of Wnt/β-catenin signaling, resulting in prolonged anagen and cellular proliferation. Therefore, we suggest that C. choseniana can be used as a therapeutic agent to alleviate AGA.

Glycogen synthase kinase 3β in Toll-like receptor signaling

  • Ko, Ryeojin;Lee, Soo Young
    • BMB Reports
    • /
    • 제49권6호
    • /
    • pp.305-310
    • /
    • 2016
  • Toll-like receptors (TLRs) play a critical role in the innate immune response against pathogens. Each TLR recognizes specific pathogen-associated molecular patterns, after which they activate the adaptor protein MyD88 or TRIF-assembled signaling complex to produce immune mediators, including inflammatory cytokines and type I IFNs. Although the activation of TLR is important for host defense, its uncontrolled activation can damage the host. During the past decade, numerous studies have demonstrated that GSK3β is a key regulator of inflammatory cytokine production in MyD88-mediated TLR signaling via TLR2 and TLR4. Recently, GSK3β has also been implicated in the TRIF-dependent signaling pathway via TLR3. In this review, we describe current advances on the regulatory role of GSK3β in immune responses associated with various TLRs. A better understanding of the role of GSK3β in TLR signaling might lead to more effective anti-inflammatory interventions.

Phosphorylation-dependent regulation of Notch1 signaling: the fulcrum of Notch1 signaling

  • Lee, Hye-Jin;Kim, Mi-Yeon;Park, Hee-Sae
    • BMB Reports
    • /
    • 제48권8호
    • /
    • pp.431-437
    • /
    • 2015
  • Notch signaling plays a pivotal role in cell fate determination, cellular development, cellular self-renewal, tumor progression, and has been linked to developmental disorders and carcinogenesis. Notch1 is activated through interactions with the ligands of neighboring cells, and acts as a transcriptional activator in the nucleus. The Notch1 intracellular domain (Notch1-IC) regulates the expression of target genes related to tumor development and progression. The Notch1 protein undergoes modification after translation by posttranslational modification enzymes. Phosphorylation modification is critical for enzymatic activation, complex formation, degradation, and subcellular localization. According to the nuclear cycle, Notch1-IC is degraded by E3 ligase, FBW7 in the nucleus via phosphorylation-dependent degradation. Here, we summarize the Notch signaling pathway, and resolve to understand the role of phosphorylation in the regulation of Notch signaling as well as to understand its relation to cancer. [BMB Reports 2015; 48(8): 431-437]

Alk3/Alk3b and Smad5 Mediate BMP Signaling during Lymphatic Development in Zebrafish

  • Kim, Jun-Dae;Kim, Jongmin
    • Molecules and Cells
    • /
    • 제37권3호
    • /
    • pp.270-274
    • /
    • 2014
  • Lymphatic vessels are essential to regulate interstitial fluid homeostasis and diverse immune responses. A number of crucial factors, such as VEGFC, SOX18, PROX1, FOX2C, and GJC2, have been implicated in differentiation and/or maintenance of lymphatic endothelial cells (LECs). In humans, dysregulation of these genes is known to cause lymphedema, a debilitating condition which adversely impacts the quality of life of affected individuals. However, there are no currently available pharmacological treatments for lymphedema, necessitating identification of additional factors modulating lymphatic development and function which can be targeted for therapy. In this report, we investigate the function of genes associated with Bone Morphogenetic Protein (BMP) signaling in lymphatic development using zebrafish embryos. The knock-down of BMP type II receptors, Bmpr2a and Bmpr2b, and type I receptors, Alk3 and Alk3b, as well as SMAD5, an essential cellular mediator of BMP signaling, led to distinct lymphatic defects in developing zebrafish. Therefore, it appears that each constituent of the BMP signaling pathway may have a unique function during lymphatic development. Taken together, our data demonstrate that BMP signaling is essential for normal lymphatic vessel development in zebrafish.