• Title/Summary/Keyword: cellular energy

Search Result 522, Processing Time 0.026 seconds

AMPK Activators from Natural Products: A Patent Review

  • Uddin, Mohammad Nasir;Sharma, Govinda;Choi, Hong Seok;Lim, Seong-Il;Oh, Won Keun
    • Natural Product Sciences
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • AMP-activated protein kinase (AMPK) is a major cellular energy sensor and master regulator of metabolic homeostasis. On activation, this cellular fuel sensing enzyme induces a series of metabolic changes to balance energy consumption via multiple downstream signaling pathways controlling nutrient uptake and energy metabolism. This pivotal role of AMPK has led to the development of numerous AMPK activators which might be used as novel drug candidates in the treatment of AMPK related disorders, diabetes, obesity, and other metabolic diseases. Consequently, a number of patents have been published on AMPK activators from natural products and other sources. This review covers the patented AMPK activators from natural products and their therapeutic potential in treatment or prevention of metabolic diseases including diabetes and obesity.

AMPK Alchemy: Therapeutic Potentials in Allergy, Aging, and Cancer

  • Ram Hari Pokhrel;Suman Acharya;Sunil Mishra;Ye Gu;Umar Manzoor;Jeon-Kyung Kim;Youngjun Park;Jae-Hoon Chang
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.171-182
    • /
    • 2024
  • All cells are equipped with intricate signaling networks to meet the energy demands and respond to the nutrient availability in the body. AMP-activated protein kinase (AMPK) is among the most potent regulators of cellular energy balance. Under ATP -deprived conditions, AMPK phosphorylates substrates and affects various biological processes, such as lipid/glucose metabolism and protein synthesis. These actions further affect the cell growth, death, and functions, altering the cellular outcomes in energy-restricted environments. AMPK plays vital roles in maintaining good health. AMPK dysfunction is observed in various chronic diseases, making it a promising target for preventing and alleviating such diseases. Herein, we highlight the different AMPK functions, especially in allergy, aging, and cancer, to facilitate the development of new therapeutic approaches in the future.

Management of Base Stations having Cell Zooming Capability for Green Cellular Networks (그린 셀룰러 네트워크를 위한 Cell Zooming 가능을 가진 기지국들의 관리)

  • Jun, Kyung-Koo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8B
    • /
    • pp.904-909
    • /
    • 2011
  • Cell zooming adjusts the cell range of base stations depending on traffic condition. The cell zooming can be implemented by the adjustment of antenna angles, the clustering of the base stations, and the cell relay. The base stations can adjust the cell range in term of energy efficiency, which can then reduce the overall energy consumption of cellular networks. There is, however, a trade-off between the energy savings and the blocking probability of user calls. A periodic scheme that manages the cell zooming of the base stations was proposed but it was inadequate for dealing with the dynamic nature of traffic patterns. This paper proposes a semi-periodic cell zooming scheme along with the algorithms that select such base stations and define the operation procedure. Simulation results show that the proposed method outperforms the existing scheme in terms of the energy savings without the degradation of the blocking probability.

Numerical Investigation on Initiation Process of Spherical Detonation by Direct Initiation with Various Ignition Energy

  • Nirasawa, Takayuki;Matsuo, Akiko
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.45-52
    • /
    • 2008
  • In order to investigate the initiation and propagation processes of a spherical detonation wave induced by direct initiation, numerical simulations were carried out using two-dimensional compressible Euler equations with an axisymmetric assumption and a one-step reaction model based on Arrhenius kinetics with various levels of ignition energy. By varying the amount of ignition energy, three typical initiation behaviors, which were subcritical, supercritical and critical regimes, were observed. Then, the ignition energy of more than $137.5{\times}10^6$ in non-dimensional value was required for initiating a spherical detonation wave, and the minimum ignition energy(i.e., critical energy) was less than that of the one-dimensional simulation reported by a previous numerical work. When the ignition energy was less than the critical energy, the blast wave generated from an ignition source continued to attenuate due to the separation of the blast wave and a reaction front. Therefore, detonation was not initiated in the subcrtical regime. When the ignition energy was more than the minimum initiation energy, the blast wave developed into a multiheaded detonation wave propagating spherically at CJ velocity, and then a cellular pattern radiated regularly out from the ignition center in the supercritical regime. The influence on ignition energy was observed in the cell width near the ignition center, but the cell width on the fully developed detonation remained constant during the expanding of detonation wave due to the consecutive formation of new triple points, regardless of ignition energy. When the ignition energy was equal to the critical energy, the decoupling of the blast wave and a reaction front appeared, as occurred in the subcrtical regime. After that, the detonation bubble induced by the local explosion behind the blast wave expanded and developed into the multiheaded detonation wave in the critical regime. Although few triple points were observed in the vicinity of the ignition core, the regularly located cellular pattern was generated after the onset of the multiheaded detonation. Then, the average cell width on the fully developed detonation was almost to that in the supercritical regime. These numerical results qualitatively agreed with previous experimental works regarding the initiation and propagation processes.

  • PDF

Mechanisms and Physiological Roles of Mitophagy in Yeast

  • Fukuda, Tomoyuki;Kanki, Tomotake
    • Molecules and Cells
    • /
    • v.41 no.1
    • /
    • pp.35-44
    • /
    • 2018
  • Mitochondria are responsible for supplying of most of the cell's energy via oxidative phosphorylation. However, mitochondria also can be deleterious for a cell because they are the primary source of reactive oxygen species, which are generated as a byproduct of respiration. Accumulation of mitochondrial and cellular oxidative damage leads to diverse pathologies. Thus, it is important to maintain a population of healthy and functional mitochondria for normal cellular metabolism. Eukaryotes have developed defense mechanisms to cope with aberrant mitochondria. Mitochondria autophagy (known as mitophagy) is thought to be one such process that selectively sequesters dysfunctional or excess mitochondria within double-membrane autophagosomes and carries them into lysosomes/vacuoles for degradation. The power of genetics and conservation of fundamental cellular processes among eukaryotes make yeast an excellent model for understanding the general mechanisms, regulation, and function of mitophagy. In budding yeast, a mitochondrial surface protein, Atg32, serves as a mitochondrial receptor for selective autophagy that interacts with Atg11, an adaptor protein for selective types of autophagy, and Atg8, a ubiquitin-like protein localized to the isolation membrane. Atg32 is regulated transcriptionally and post-translationally to control mitophagy. Moreover, because Atg32 is a mitophagy-specific protein, analysis of its deficient mutant enables investigation of the physiological roles of mitophagy. Here, we review recent progress in the understanding of the molecular mechanisms and functional importance of mitophagy in yeast at multiple levels.

Three-dimensional Computational Modeling and Simulation of Intergranular Corrosion Propagation of Stainless Steel

  • Igarashi, T.;Komatsu, A.;Motooka, T.;Ueno, F.;Yamamoto, M.
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.105-111
    • /
    • 2021
  • In oxidizing nitric acid solutions, stainless steel undergoes intergranular corrosion accompanied by grain dropping and changes in the corrosion rate. For the safe operation of reprocessing plants, this mechanism should be understood. In this study, we constructed a three-dimensional computational model using a cellular automata method to simulate the intergranular corrosion propagation of stainless steel. The computational model was constructed of three types of cells: grain (bulk), grain boundary (GB), and solution cells. Model simulations verified the relationship between surface roughness during corrosion and dispersion of the dissolution rate of the GB. The relationship was investigated by simulation applying a constant dissolution rate and a distributed dissolution rate of the GB cells. The distribution of the dissolution rate of the GB cells was derived from the intergranular corrosion depth obtained by corrosion tests. The constant dissolution rate of the GB was derived from the average dissolution rate. Surface roughness calculated by the distributed dissolution rates of the GBs of the model was greater than the constant dissolution rates of the GBs. The cross-sectional images obtained were comparable to the corrosion test results. These results indicate that the surface roughness during corrosion is associated with the distribution of the corrosion rate.

E3 ligase BRUTUS Is a Negative Regulator for the Cellular Energy Level and the Expression of Energy Metabolism-Related Genes Encoded by Two Organellar Genomes in Leaf Tissues

  • Choi, Bongsoo;Hyeon, Do Young;Lee, Juhun;Long, Terri A.;Hwang, Daehee;Hwang, Inhwan
    • Molecules and Cells
    • /
    • v.45 no.5
    • /
    • pp.294-305
    • /
    • 2022
  • E3 ligase BRUTUS (BTS), a putative iron sensor, is expressed in both root and shoot tissues in seedlings of Arabidopsis thaliana. The role of BTS in root tissues has been well established. However, its role in shoot tissues has been scarcely studied. Comparative transcriptome analysis with shoot and root tissues revealed that BTS is involved in regulating energy metabolism by modulating expression of mitochondrial and chloroplast genes in shoot tissues. Moreover, in shoot tissues of bts-1 plants, levels of ADP and ATP and the ratio of ADP/ATP were greatly increased with a concomitant decrease in levels of soluble sugar and starch. The decreased starch level in bts-1 shoot tissues was restored to the level of shoot tissues of wild-type plants upon vanadate treatment. Through this study, we expand the role of BTS to regulation of energy metabolism in the shoot in addition to its role of iron deficiency response in roots.

Mechanical Properties of Aluminium Alloy with Cellular Structure. (미세기공 알루미늄 소재의 기계적 성질)

  • 윤성원;이승후;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.695-698
    • /
    • 2002
  • Induction heating process is one of the most efficient heating process in terms of temperature control accuracy and heating time saving. In the past study, fabrication process of cellular 6061 alloys by powder metallurgical route and induction heating process was studied. To supplement the framing conditions that studied in past study, effect of induction heating capacity and holding time at foaming temperature were investigated. Under the achieved framing conditions, teamed 6061 alloys were fabricated for variation of foaming temperature, and porosities(%)-foaming temperature curves were obtained by try-error experimental method. Uniaxial compression tests were performed to investigate the relationship between porosities(%) and stress-strain curves of framed 6061 alloy. Also, energy absorption capacity and efficiency were calculated from stress-strain curves to investigated. Moreover, dependence of plateau stress on strain rate was investigated in case of cellular 6061 alloy with low porosities(%)

  • PDF

Performance Standards and Evaluation of Elastomeric Flexible Cellular Insulation (고무 발포 배관 보온 단열재의 성능 기준 및 평가)

  • Jeon, Hyun-Seok;Choi, Hyoun-Jung;Choi, Gyoung-Seok;Kang, Jae-Sik;Lee, Seung-Eon;Jeong, Gwang-Seop
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.614-617
    • /
    • 2009
  • Elastomeric Flexible Cellular Insulation is widely used in construction fields to prevent condensation and frozen pipes, reduce energy, and improve insulation. However, when Elastomeric Flexible Cellular Insulation has been installed in buildings in Korea, there was no standardization, which resulted in heat loss Therefore, insulation design standards need to be developed and from these standards, pipe insulation should be improved to increase its efficiency. This study estimates temperature and surface-emissivity according to the thickness of insulation to evaluate thermal performance.

  • PDF

Development of Zinc Air Battery for Cellular Phone (휴대전화기용 아연공기전지 개발)

  • Eom, Seung-Wook;Kim, Jee-Hoon;Moon, Seong-In;Yun, Mun-Soo;Kim, Ju-Yong;Park, Jeong-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1083-1088
    • /
    • 2004
  • Zinc air batteries obtain their energy density advantage over the other batteries by utilizing ambient oxygen as the cathode materials, and reusing cathode as recycled form. And specific capacity of zinc powder is as high as 820mAh/g. Our research team succeeded in producing 2.4 Ah class zinc air battery for cellular phone application. In this paper we had studied performance of cathode according to various factors and demonstrated the performance of 2.4 Ah class zinc air battery for cellular phone application.

  • PDF