• Title/Summary/Keyword: cellular differentiation

Search Result 785, Processing Time 0.027 seconds

Possibility of Cancer Treatment by Cellular Differentiation into Adipocytes (지방세포로의 분화를 통한 악성 종양의 치료 가능성)

  • Byeong-Gyun Jeon;Sung-Ho Lee
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.512-522
    • /
    • 2023
  • Cancer with unlimited cell growth is a leading cause of death globally. Various cancer treatments, including surgery, chemotherapy, radiation therapy, immunotherapy, and targeted therapy, can be applied alone or in combination depending on the cancer type and stage. New treatments with fewer side effects than previous cancer treatments are continually under development and in demand. Undifferentiated stem cells with unlimited cell growth are gradually changed via cellular differentiation to arrest cell growth. In this study, we reviewed the possibility of treating cancer by using cellular differentiation into the adipocytes in cancer cells. In previous in vitro studies, oral antidiabetic drugs of the thiazolidinedione (TDZ) class, such as rosiglitazone and pioglitazone, were induced into the adipocytes in various cancer cell lines via increased peroxisome proliferator-activated receptor-γ (PPAR γ) expression and glucose uptake, which is the key regulator of adipogenesis and the energy metabolism pathway. The differentiated adipogenic cancer cells treated with TDZ inhibited cell growth and had a less cellulotoxic effect. This adipogenic differentiation treatment suggests a possible chemotherapy option in cancer cells with high and abnormal glucose metabolism levels. However, the effects of the in vivo adipogenic differentiation treatment need to be thoroughly investigated in different types of stem and normal cells with other side effects.

Secretory Differentiation of Hamster Tracheal Epithelial Cells Increases Activation of Matrix Metalloproteinase-2

  • Shin, Chan-Young;Lee, Woo-Jong;Park, Kyu-Hwan;Ryu, Jae-Ryun;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • In chronic airway inflammatory diseases such as asthma and chronic bronchitis, it has been suggested that matrix metalloproteinases secreted from infiltrating neutrophil contribute the pathogenesis of the disease and have been a focus of intense investigation. We report here that hamster tracheal surface epithelial goblet cells (HTSE cells) produce matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2). Matrix metalloproteinase activities were investigated using [$^3H$]collagen-digestion assay and gelatin zymography. The subtype of matrix metalloproteinases expressed from HTSE cells was MMP-2 (gelatinase A), which was determined by Western blot with various subtype selective anti-matrix metalloproteinase antibodies. The MMP-2 and TIMP-2 cDNAs from HTSE cells were partially cloned by RT-PCR and they reveal more than 90% of sequence homology with those from human, rat and mouse. The collagenolytic activity was increased with the secretory differentiation of the HTSE cell and it was found that zymogen activation was responsible for the increased MMP-2 activity in HTSE cells. The results from the present study suggest that the metaplastic secretory differentiation of airway goblet cells may affect chronic airway inflammatory process by augmenting the zymogen activation of MMP-2.

Effects of Chaenomelis Fructus Extract on the regulation of myoblasts differentiation and the expression of biogenetic factors in C2C12 myotubes (모과추출물의 C2C12 근육세포에서 근분화 및 에너지대사조절인자 발현 증진 효과 연구)

  • Kang, Seok Yong;Hyun, Sun Young;Kwon, Yedam;Park, Yong-Ki;Jung, Hyo Won
    • The Korea Journal of Herbology
    • /
    • v.34 no.6
    • /
    • pp.99-107
    • /
    • 2019
  • Objective : The present study was conducted to investigate the effects of Chaenomelis Fructus (CF) on the regulation of biogenesis in C2C12 mouse skeletal muscle cells. Methods : C2C12 myoblasts were differentiated into myotubes in 2% horse serum-containing medium for 5 days, and then treated with CF extract at different concentrations for 48 hr. The expression of muscle differentiation markers, myogenin and myosin heavy chain (MHC) and mitochondrial biogenesis-regulating factors, peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC1α), sirtuin1 (Sirt1), nuclear respiratory factor1 (NRF1) and transcription factor A, mitochondrial (TFAM), and the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) were determined in C2C12 myotubes by reverse transcriptase (RT)-polymerase chain reaction (RT-PCR) and western blot, respectively. The cellular glucose levels and total ATP contents were measured by cellular glucose uptake and ATP assays, respectively. Results : Treatment with CF extract (0.01, 0.02, and 0.05 mg/㎖) significantly increased the expression of MHC protein in C2C12 myotubes compared with non-treated cells. CF extract significantly increased the expression of PGC1α and TFAM in the myotubes. Also, CF extract significantly increased glucose uptake levels and ATP contents in the myotubes. Conclusion : CF extract can stimulate C2C12 myoblasts differentiation into myotubes and increase energy production through upregulation of the expression of mitochondrial biogenetic factors in C2C12 mouse skeletal muscle cell. This suggests that CF can help to improve skeletal muscle function with stimulation of the energy metabolism.

Effects of Retinoic Acid and cAMP on the Differentiation of Naegleria gruberi Amoebas into Flagellates

  • Bora Kim;Hong Kyoung Kim;Daemyoung Kim;In Kwon Chung;Young Min Kim;Jin Won Cho;JooHun Lee
    • Animal cells and systems
    • /
    • v.3 no.2
    • /
    • pp.207-213
    • /
    • 1999
  • During the differentiation of Naegleria gruberi amoebas into flagellates, the amoebas undergo sequential changes in cell shape and form new cellular organelles. To understand the nature of the signal which initiates this differentiation and the signal transduction pathway, we treated cells with four agents, PMA, retinoic acid (RA), okadaic acid, and cAMP. Retinoic acid and cAMP had specific effects on the differentiation of N. gruberi depending on the time of the drug treatment. Addition of (100$\mu$M) retinoic acid at the initiation of differentiation inhibited differentiation by blockinq the transcription of differentiation specific genes (e.g., $\beta$-tubulin). This inhibition of differentiation by retinoic acid was overcome by co-treatment with cAMP (or dbcAMP, 20 $\mu$M). Addition of retinoic acid at later stages (30 and 70 min) had no effect on the transcriptional regulation of the $\beta$-tubulin gene, however the differentiation was inhibited by different degrees. Co-treatment of cAMP at these stages did not overcome the inhibitory effect of retinoic acid. These results suggest that the role of retinoic acid as a transcriptional regulator might be conserved throughout the evolution of eukaryotes.

  • PDF

Peroxisome Proliferator-Activated Receptor α Facilitates Osteogenic Differentiation in MC3T3-E1 Cells via the Sirtuin 1-Dependent Signaling Pathway

  • Gong, Kai;Qu, Bo;Wang, Cairu;Zhou, Jingsong;Liao, Dongfa;Zheng, Wei;Pan, Xianming
    • Molecules and Cells
    • /
    • v.40 no.6
    • /
    • pp.393-400
    • /
    • 2017
  • Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by lack of insulin and high glucose levels. T2DM can cause bone loss and fracture, thus leading to diabetic osteoporosis. Promoting osteogenic differentiation of osteoblasts may effectively treat diabetic osteoporosis. We previously reported that Sirtuin 1 (Sirt1), a $NAD^+$-dependent deacetylase, promotes osteogenic differentiation through downregulation of peroxisome proliferator-activated receptor (PPAR) ${\gamma}$. We also found that miR-132 regulates osteogenic differentiation by downregulating Sirt1 in a $PPAR{\beta}/{\delta}$-dependent manner. The ligand-activated transcription factor, $PPAR{\alpha}$, is another isotype of the peroxisome proliferator-activated receptor family that helps maintain bone homeostasis and promot bone formation. Whether the regulatory role of $PPAR{\alpha}$ in osteogenic differentiation is mediated via Sirt1 remains unclear. In the present study, we aimed to determine this role and the underlying mechanism by using high glucose (HG) and free fatty acids (FFA) to mimic T2DM in MC3T3-E1 cells. The results showed that HG-FFA significantly inhibited expression of $PPAR{\alpha}$, Sirt1 and osteogenic differentiation, but these effects were markedly reversed by $PPAR{\alpha}$ overexpression. Moreover, siSirt1 attenuated the positive effects of $PPAR{\alpha}$ on osteogenic differentiation, suggesting that $PPAR{\alpha}$ promotes osteogenic differentiation in a Sirt1-dependent manner. Luciferase activity assay confirmed interactions between $PPAR{\alpha}$ and Sirt1. These findings indicate that $PPAR{\alpha}$ promotes osteogenic differentiation via the Sirt1-dependent signaling pathway.

Effect of Nardostachys chinensis on Induction of Differentiation in U937 Monomyelocytic Cells (감송향(甘松香) 물추출물이 U937 백혈병 세포의 분화유도에 미치는 영향)

  • Kim, Jin-Kuk;Ju, Sung-Min;Jeon, Byung-Jae;Yang, Hyun-Mo;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.29-36
    • /
    • 2011
  • Nardostachyts chinensis (N. chinensis) belonging to the family Valerianaceae has been used to elicit stomachic and sedative effects. The MAPKs are serine/threonine kinases involved in the regulation of various cellular responses, such as cell proliferation, differentiation and apoptosis. The PKC also plays a key role in regulating the response of hematopoietic cells to both physiological and pathological inducers of proliferation and differentiation. This study investigated the signaling pathways on the U937 cell differentiation induced by N. chinensis. N. chinensis induced the differentiation of U937 cells, as shown by increased of differentiation surface antigen CD11b. Activation of ERK increased time-dependently in differentiation of U937 cells induced by N. chinensis, but activations of JNK and p38 were unaffected. Inhibitor of ERK (PD98059) significantly reduced CD11b expression induced by N. chinensis in U937 cells. In addition, N. chinensis increased protein level of PKC ${\beta}$I and PKC ${\beta}$II isoforms, but the protein level of PKC ${\alpha}$ and PKC ${\gamma}$was constant. PKC inhibitors (GF 109203X and H-7) inhibited U937 cell differentiation and the ERK activation induced by N. chinensis. These results indicated that PKC and ERK may be involved in U937 cell differentiation induced by N. chinensis.

Defective Self-Renewal and Differentiation of GBA-Deficient Neural Stem Cells Can Be Restored By Macrophage Colony-Stimulating Factor

  • Lee, Hyun;Bae, Jae-sung;Jin, Hee Kyung
    • Molecules and Cells
    • /
    • v.38 no.9
    • /
    • pp.806-813
    • /
    • 2015
  • Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the glucocerebrosidase gene (GBA), which encodes the lysosomal enzyme glucosylceramidase (GCase). Deficiency in GCase leads to characteristic visceral pathology and lethal neurological manifestations in some patients. Investigations into neurogenesis have suggested that neurodegenerative disorders, such as GD, could be overcome or at least ameliorated by the generation of new neurons. Bone marrowderived mesenchymal stem cells (BM-MSCs) are potential candidates for use in the treatment of neurodegenerative disorders because of their ability to promote neurogenesis. Our objective was to examine the mechanism of neurogenesis by BM-MSCs in GD. We found that neural stem cells (NSCs) derived from a neuronopathic GD model exhibited decreased ability for self-renewal and neuronal differentiation. Co-culture of GBA-deficient NSCs with BM-MSCs resulted in an enhanced capacity for self-renewal, and an increased ability for differentiation into neurons or oligodendrocytes. Enhanced proliferation and neuronal differentiation of GBA-deficient NSCs was associated with elevated release of macrophage colony-stimulating factor (M-CSF) from BM-MSCs. Our findings suggest that soluble M-CSF derived from BM-MSCs can modulate GBA-deficient NSCs, resulting in their improved proliferation and neuronal differentiation.

Differentiation of mouse embryonic stem cell into smooth muscle cells by DBcAMP and retinoic acid (DBcAMP와 retinoic acid를 이용한 마우스 배아줄기의 평활근세포 분화)

  • Park, Sung-Soo;Kang, Ju-Won
    • Korean Journal of Veterinary Service
    • /
    • v.31 no.4
    • /
    • pp.449-456
    • /
    • 2008
  • The differentiation of mouse embryonic stem(ES) cell into smooth muscle cells(SMC) may play a major role in cardiovascular development and under pathophysiological conditions. Therefore, in the present study, we have examined the differentiation of ES cells and its related gene expression. SMC differentiation was indicated by cellular morphology and time-dependent induction of dibutyryl adenosine 3,5-cyclic monophosphate(DBcAMP)and retinoic acid(RA) on smooth muscle ${\alpha}$-actin($SM{\alpha}A$), smooth muscle myosin heavy chain(SMMHC) gene expression. The control was undifferentiated ES cells(protein expressions represent 50-60kDaOct-4). The results of this study show that morphology of embryoid body and confirmation of $SM{\alpha}A$ expression by immunocytochemistry. Moreover, SMMHC and desmin expression was significantly increased by time dependent manner(5, 7, 15 days), in contrast to $SM{\alpha}A$ expression was slightly decreased on 15days. In conclusion, DBcAMP and RA stimulate mouse ES cells differentiation into SMC and enhanced $SM{\alpha}A$, SMMHC and desmin expression.

The effects of Pongamia pinnata on osteogenic differentiation and mineralization of human stem cells derived from the gingiva

  • Lee, Hyunjin;Uddin, Md. Salah;Kim, Yong-In;Choi, Sangho;Park, Jun-Beom
    • The Journal of Korean Medicine
    • /
    • v.38 no.4
    • /
    • pp.1-10
    • /
    • 2017
  • Objectives: The aim of the present study is to evaluate the effects of the extract of Pongamia pinnata on the morphology, viability, and differentiation potential of human stem cells derived from the gingiva. Methods: Stem cells obtained from gingivae were cultured in an osteogenic medium in the presence of methanol extract of Pongamia pinnata (PPT) at concentrations ranging from 0.001 to 1%. Evaluations of cell morphology and cellular viability were done at Day 1. Alkaline phosphatase activity assays and Alizarin red S staining were performed to evaluate the osteogenic differentiation of stem cells. Results: The morphology of stem cells in the presence of PPT at final concentrations of 0%, 0.001%, 0.01%, 0.1%, and 1% did not produce any noticeable changes when compared with the untreated control group. Application of PPT produced a significant increase in alkaline phosphatase activity when compared to the control group. The results of the Alizarin Red S staining showed a significant increase of absorbance with the 0.001% group. Conclusions: Based on these findings, it was concluded that PPT could produce beneficial effects on mesenchymal stem cells with enhanced osteogenic differentiation.

Differentiation and upregulation of heat shock protein 70 induced by a subset of histone deacetylase inhibitors in mouse and human embryonic stem cells

  • Park, Jeong-A;Kim, Young-Eun;Seok, Hyun-Jeong;Park, Woo-Youn;Kwon, Hyung-Joo;Lee, Young-Hee
    • BMB Reports
    • /
    • v.44 no.3
    • /
    • pp.176-181
    • /
    • 2011
  • Inhibiting histone deacetylase (HDAC) activity modulates the epigenetic status of cells, resulting in an alteration of gene expression and cellular function. Here, we investigated the effects of HDAC inhibitors on mouse embryonic stem (ES) cells. The HDAC inhibitors trichostatin A, suberoylanilide hydroxamic acid, sodium butyrate, and valproic acid induced early differentiation of mouse ES cells and triggered induction of heat-shock protein (HSP)70. In contrast, class III HDAC inhibitors failed to induce differentiation or HSP70 expression. Transcriptional upregulation of HSP70 was confirmed by mRNA expression analysis, an inhibitor study, and chromatin immunoprecipitation. HSP70 induction was dependent on the SAPK/JNK, p38, and PI3K/Akt pathways. Differentiation and induction of HSP70 by a subset of HDAC inhibitors was also examined in human ES cells, which suggests that the phenomenon generally occurs in ES cells. A better understanding of the effects of HDAC inhibitors may give more insight into their application in stem cell biology.