• Title/Summary/Keyword: cellular agriculture

Search Result 244, Processing Time 0.025 seconds

LEAF CELLULAR AUTOMATA

  • Okayama, T.;Murase, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.295-299
    • /
    • 2000
  • We have developed bio-system derived algorithm: Leaf Cellular Automata(LCA). LCA are one form of cellular automata. LCA are reffered to activity of a leaf. LCA have four layers: the "CO$_2$ Layer", the "Stoma Layer", the "Starch Layer" and the "Water Layer". In order to evaluate this optimization algorithm, we used a pattern matching problem.

  • PDF

Cellular Uptake and Cytotoxicity of β-Lactoglobulin Nanoparticles: The Effects of Particle Size and Surface Charge

  • Ha, Ho-Kyung;Kim, Jin Wook;Lee, Mee-Ryung;Jun, Woojin;Lee, Won-Jae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.3
    • /
    • pp.420-427
    • /
    • 2015
  • It is necessary to understand the cellular uptake and cytotoxicity of food-grade delivery systems, such as ${\beta}$-lactoglobulin (${\beta}$-lg) nanoparticles, for the application of bioactive compounds to functional foods. The objectives of this study were to investigate the relationships between the physicochemical properties of ${\beta}$-lg nanoparticles, such as particle size and zeta-potential value, and their cellular uptakes and cytotoxicity in Caco-2 cells. Physicochemical properties of ${\beta}$-lg nanoparticles were evaluated using particle size analyzer. Flow cytometry and confocal laser scanning microscopy were used to investigate cellular uptake and cytotoxicity of ${\beta}$-lg nanoparticles. The ${\beta}$-lg nanoparticles with various particle sizes (98 to 192 nm) and zeta-potential values (-14.8 to -17.6 mV) were successfully formed. A decrease in heating temperature from $70^{\circ}C$ to $60^{\circ}C$ resulted in a decrease in the particle size and an increase in the zeta-potential value of ${\beta}$-lg nanoparticles. Non-cytotoxicity was observed in Caco-2 cells treated with ${\beta}$-lg nanoparticles. There was an increase in cellular uptake of ${\beta}$-lg nanoparticles with a decrease in particle size and an increase in zeta-potential value. Cellular uptake ${\beta}$-lg nanoparticles was negatively correlated with particle size and positively correlated with zeta-potential value. Therefore, these results suggest that the particle size and zeta-potential value of ${\beta}$-lg nanoparticles play an important role in the cellular uptake. The ${\beta}$-lg nanoparticles can be used as a delivery system in foods due to its high cellular uptake and non-cytotoxicity.

Experimental Allergic Contact Dermatitis in the Guinea Pig (기니픽에 있어서 실험적(實驗的) 앨러지성(性) 접촉성(接觸性) 피부염(皮膚炎))

  • Lee, Chai-yong;Lee, Chung-gil;Lee, Ju-mook
    • Korean Journal of Veterinary Research
    • /
    • v.24 no.2
    • /
    • pp.169-171
    • /
    • 1984
  • An expeliment was carried out to measure the cellular immune response in guinea pigs by sensitizing the animals with 2, 4-dinitrochlorobenzene(DNCB). The guinea pigs could be sensitized with one application of DNCB. The sensitizing and challenge dose was standardized. The histological response was characteristic of a delayed hypersensitivity reaction.

  • PDF

Characterization of ginsenoside compound K loaded ionically cross-linked carboxymethyl chitosan-calcium nanoparticles and its cytotoxic potential against prostate cancer cells

  • Zhang, Jianmei;Zhou, Jinyi;Yuan, Qiaoyun;Zhan, Changyi;Shang, Zhi;Gu, Qian;Zhang, Ji;Fu, Guangbo;Hu, Weicheng
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.228-235
    • /
    • 2021
  • Backgroud: Ginsenoside compound K (GK) is a major metabolite of protopanaxadiol-type ginsenosides and has remarkable anticancer activities in vitro and in vivo. This work used an ionic cross-linking method to entrap GK within O-carboxymethyl chitosan (OCMC) nanoparticles (Nps) to form GK-loaded OCMC Nps (GK-OCMC Nps), which enhance the aqueous solubility and stability of GK. Methods: The GK-OCMC Nps were characterized using several physicochemical techniques, including x-ray diffraction, transmission electron microscopy, zeta potential analysis, and particle size analysis via dynamic light scattering. GK was released from GK-OCMC Nps and was conducted using the dialysis bag diffusion method. The effects of GK and GK-OCMC Nps on PC3 cell viability were measured by using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Fluorescent technology based on Cy5.5-labeled probes was used to explore the cellular uptake of GK-OCMC Nps. Results: The GK-OCMC NPs had a suitable particle size and zeta potential; they were spherical with good dispersion. In vitro drug release from GK-OCMC NPs was pH dependent. Moreover, the in vitro cytotoxicity study and cellular uptake assays indicated that the GK-OCMC Nps significantly enhanced the cytotoxicity and cellular uptake of GK toward the PC3 cells. GK-OCMC Nps also significantly promoted the activities of both caspase-3 and caspase-9. Conclusion: GK-OCMC Nps are potential nanocarriers for delivering hydrophobic drugs, thereby enhancing water solubility and permeability and improving the antiproliferative effects of GK.

Emerging Roles of RNA-Binding Proteins in Plant Growth, Development, and Stress Responses

  • Lee, Kwanuk;Kang, Hunseung
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.179-185
    • /
    • 2016
  • Posttranscriptional regulation of RNA metabolism, including RNA processing, intron splicing, editing, RNA export, and decay, is increasingly regarded as an essential step for fine-tuning the regulation of gene expression in eukaryotes. RNA-binding proteins (RBPs) are central regulatory factors controlling posttranscriptional RNA metabolism during plant growth, development, and stress responses. Although functional roles of diverse RBPs in living organisms have been determined during the last decades, our understanding of the functional roles of RBPs in plants is lagging far behind our understanding of those in other organisms, including animals, bacteria, and viruses. However, recent functional analysis of multiple RBP family members involved in plant RNA metabolism and elucidation of the mechanistic roles of RBPs shed light on the cellular roles of diverse RBPs in growth, development, and stress responses of plants. In this review, we will discuss recent studies demonstrating the emerging roles of multiple RBP family members that play essential roles in RNA metabolism during plant growth, development, and stress responses.

Simulation of land use changes in Hanam city using an object-based cellular automata model (객체기반 셀룰러오토마타 모형을 이용한 하남시 토지이용변화 모의)

  • KIM, Il-Kwon;KWON, Hyuk-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.202-217
    • /
    • 2018
  • Urban land use changes by human activities affect spatial configuration of urban areas and their surrounding ecosystems. Although it is necessary to identify patterns of urban land use changes and to simulate future changes for sustainable urban management, simulation of land use changes is still challenging due to their uncertainty and complexity. Cellular automata model is widely used to simulate urban land use changes based on cell-based approaches. However, cell-based models can not reflect features of actual land use changes and tend to simulate fragmented patterns. To solve these problems, object-based cellular automata models are developed, which simulate land use changes by land patches. This study simulate future land use changes in Hanam city using an object-based cellular automata model. Figure of merit of the model is 24.1%, which assess accuracy of the simulation results. When a baseline scenario was applied, urban decreased by 16.4% while agriculture land increased by 9.0% and grass increased by 19.3% in a simulation result of 2038 years. In an urban development scenario, urban increased by 22.4% and agriculture land decreased by 26.1% while forest and grass did not have significant changes. In a natural conservation scenario, urban decreased by 29.5% and agriculture land decreased by 8.8% while each forest and grass increased by 6% and 42.8%. The model can be useful to simulate realistic urban land use change effectively, and then, applied as a decision support tool for spatial planning.