DOI QR코드

DOI QR Code

Simulation of land use changes in Hanam city using an object-based cellular automata model

객체기반 셀룰러오토마타 모형을 이용한 하남시 토지이용변화 모의

  • KIM, Il-Kwon (Bureau of Ecological Research, National Institute of Ecology) ;
  • KWON, Hyuk-Soo (Bureau of Ecological Research, National Institute of Ecology)
  • 김일권 (국립생태원 융합연구실) ;
  • 권혁수 (국립생태원 융합연구실)
  • Received : 2018.12.03
  • Accepted : 2018.12.21
  • Published : 2018.12.31

Abstract

Urban land use changes by human activities affect spatial configuration of urban areas and their surrounding ecosystems. Although it is necessary to identify patterns of urban land use changes and to simulate future changes for sustainable urban management, simulation of land use changes is still challenging due to their uncertainty and complexity. Cellular automata model is widely used to simulate urban land use changes based on cell-based approaches. However, cell-based models can not reflect features of actual land use changes and tend to simulate fragmented patterns. To solve these problems, object-based cellular automata models are developed, which simulate land use changes by land patches. This study simulate future land use changes in Hanam city using an object-based cellular automata model. Figure of merit of the model is 24.1%, which assess accuracy of the simulation results. When a baseline scenario was applied, urban decreased by 16.4% while agriculture land increased by 9.0% and grass increased by 19.3% in a simulation result of 2038 years. In an urban development scenario, urban increased by 22.4% and agriculture land decreased by 26.1% while forest and grass did not have significant changes. In a natural conservation scenario, urban decreased by 29.5% and agriculture land decreased by 8.8% while each forest and grass increased by 6% and 42.8%. The model can be useful to simulate realistic urban land use change effectively, and then, applied as a decision support tool for spatial planning.

인간 활동에 의한 도시의 토지이용변화는 도시의 공간구조와 생태계에 영향을 미친다. 토지이용변화 패턴을 파악하고 미래의 토지이용변화를 모의하는 것은 지속가능한 도시 관리를 위해 필요하지만, 토지이용변화의 불확실성과 복잡성으로 인해서 이를 효과적으로 모의하기 어렵다. 셀룰러오토마타 모형은 도시토지이용변화에 널리 사용되는 모형으로, 격자기반의 변화를 모의한다. 하지만, 격자기반의 모의는 실제 토지이용변화 특성을 반영하기 어렵고, 토지이용의 파편화가 나타나는 한계가 있다. 이러한 문제를 보완하기 위해 제작된 객체기반 셀룰러오토마타모형은 토지패치 객체별 변화를 모의한다. 본 연구는 하남시를 대상으로 객체기반 토지이용변화 모형을 제작하여 미래의 토지이용변화를 모의하였다. 제작된 모형의 정확도를 평가하는 성능지수는 24.1%로 평가되었다. 기준시나리오를 적용한 2038년의 토지이용변화 모의결과, 시가지는 16.4% 감소한 반면, 농경지는 9.0% 증가하였고, 초지는 19.3% 증가하였다. 개발시나리오의 경우 시가지는 22.4% 증가하였고, 농경지는 26.1% 감소한 반면, 산림과 초지는 큰 변화가 나타나지 않았다. 보전시나리오의 경우 시가지는 29.5%, 농경지는 8.8%감소하였고, 산림과 초지는 각각 6%, 42.8% 증가하였다. 본 모형은 실제 도시 토지이용변화를 효과적으로 모의하여 공간계획을 위한 의사결정지원도구로 사용될 수 있다.

Keywords

References

  1. Alcamo, J., K. Kok, G. Busch and J. Priess. 2008. Searching for the future of land scenarios from the local to global scale. In: Alcamo, J.(Ed.), Environmental futures: The practice of environmental scenario analysis. Elsevier, Amsterdam, The Netherlands.
  2. Antrop, M. 2004. Landscape changes and the urbanization process in Europe. Landscape and Urban Planning 67: 9-26. https://doi.org/10.1016/S0169-2046(03)00026-4
  3. Byun, G.I., C.S. Lee and C.H. Kim. 2013. A study of the change of land price according to the adjustment of development restriction area-focused on Hanam in Korea. Journal of Korea Planning Association 48(7):181-199.
  4. Chen, G., G.J. Hay, L.M. Carvalho and M.A. Wulder. 2012. Object-based change detection. International Journal of Remote Sensing 33:4434-4457. https://doi.org/10.1080/01431161.2011.648285
  5. Chen, Y., X. Li, X. Liu and B. Ai. 2014. Modeling urban land-use dynamics in a fast developing city using the modified logistic automaton with a patch-based simulation strategy. International Journal of Geographical Information Science 28(2):234-255. https://doi.org/10.1080/13658816.2013.831868
  6. Cho, D. 2008. Cellular automata based urban landuse change modeling considering development density. Journal of the Korean Geographical Society 43(1):117-133.
  7. Choi, D.S. and C.H. Yim. 2004. Densityincorporated cellular automata modelling: simulation of the urban growth for Seoul metropolitan area. Journal of Korea Planning Association 39(5):7-24.
  8. Feng, Y., Y. Liu, X. Tong, M. Liu and S. Deng. 2011. Modeling dynamic urban growth using cellular automata and particle swarm optimization rules. Landscape and Urban Planning 102:188-196. https://doi.org/10.1016/j.landurbplan.2011.04.004
  9. Han, J., Y. Hayashi, X. Cao and H. Imura. 2009. Application of an integrated system dynamics and cellular automata model for urban growth assessment: A case study of Shanhai, China. Landscape and Urban Planning 91:133-141. https://doi.org/10.1016/j.landurbplan.2008.12.002
  10. Kim, I., S. Arnhold, S. Ahn, Q.B. Le, S.J. Kim, S.J. Park and T. Koellner. 2017. Land use change and ecosystem services in mountainous watersheds: Predicting the consequences of environmental policies with cellular automata and hydrological modeling. Environmental Modelling and Software(in press).
  11. Kim, J., J. Park, I. Song, J. Song, S.M. Jun and M.S. Kang. 2015. Analysis of land use change using RCP-based Dyna- CLUE model in the Hwangguji River Watershed. Journal of Korean Society of Rural Planning 21(2):33-49. https://doi.org/10.7851/ksrp.2015.21.2.033
  12. Kim, O. 2015. Limitation of applying landchange models for REDD reference level setting. Journal of the Korean Geographical Society 50(3):277-287.
  13. Landis, J. 1994. The California urban future model: a new generation of metropolitan simulation models. Environment and Planning B 21:399-420. https://doi.org/10.1068/b210399
  14. Lawler, J.J., D.J. Lewis, E. Nelson, A.J. Plantinga, S. Polasky, J.C. Withey, D.P. Helmers, S. Martinuzzi, D. Pennington and V.C. Radeloff. 2014. Projected land -use change impacts on ecosystem services in the United States. Proceedings of the National Academy of Science 201405557.
  15. Lee, Y.G., Y.H. Cho and S.J. Kim. 2016. Prediction of land-use change based on urban growth scenario in South Korea using CLUE-s model. Journal of the Korean Association of Geographic Information Studies 19(3):75-88. https://doi.org/10.11108/kagis.2016.19.3.075
  16. Lee, S.H., J.M. Yun, K.C. Seo, K.W. Nam and S.C. Park. 2004. A study on the urban growth model of Gimhae city using celluar automata. Journal of the Korean Association of Geographic Information Studies 7(3):118-125.
  17. Liao, J., L. Tang, G. Shao, X. Su, D. Chen and T. Xu. 2016. Incorporation of extended neighborhood mechanisms and its impact on urban land-use cellular automata simulations. Environmental Modelling and Software 75:163-175. https://doi.org/10.1016/j.envsoft.2015.10.014
  18. Liu, X., X. Li, S. Wu and T. Liu. 2008. Simulating complex urban development using kernel-based non-linear cellular automata. Ecological Modeling 211(1): 169-181. https://doi.org/10.1016/j.ecolmodel.2007.08.024
  19. Li, X., P. Gong, L. Yu and T. Hu. 2017. A segment derived patch-based logistic cellular automata for urban growth modeling with heuristic rules. Computers, Environment and Urban Systems 65:140-149. https://doi.org/10.1016/j.compenvurbsys.2017.06.001
  20. Lu, Y., M. Cao and L. Zhang. 2015. A Vector-based cellular automata model for simulating urban land use change. Chinese Geographical Science 25(1):74-84. https://doi.org/10.1007/s11769-014-0719-9
  21. Meentemeyer, R.K., W. Tang, M.A. Dorning, J.B. Vogler, N. Cunniffe and A. Schoemaker. 2013. FUTURES: Multilevel simulations of emerging urban-rural landscape structure using a stochastic patch-growing algorithm. Annals of th Association of American Geographers 103(4):785-807. https://doi.org/10.1080/00045608.2012.707591
  22. Moghadam S.A., M. Karimi and K. Habibi. 2018. Simulating urban growth in a megalopolitan area using a patch-based cellular automata. Transactions in GIS 22(1):249-268. https://doi.org/10.1111/tgis.12309
  23. Park, I.H. and S.R. Ha. 2013. Land use change prediction of Cheongju using SLEUTH model. Journal of Environmental Impact Assessment 22(1):109-116. https://doi.org/10.14249/eia.2013.22.1.109
  24. Polemans, L. and A. Van Rompaey. 2010. Complexity and performance of urban expansion models. Computers, Environment and Urban Systems 34(1):17-27. https://doi.org/10.1016/j.compenvurbsys.2009.06.001
  25. Pontius, R.G., W. Boersma, J.C. Castella, K. Clarke, T. Nijs, C. Dietzel, Z. Duan, E. Fotsing, N. Goldstein, K. Kok, E. Koomen, C.D. Lippitt, W. McConnell, A. Mohd Sood, B. Pijanowski, S. Pithadis, S. Sweeney, T.N. Trung, A.T. Veldkamp and P.H. Verburg. 2008. Comparing the input, output and validation maps for several models of land change. The Annals of Regional Science 42:11-37. https://doi.org/10.1007/s00168-007-0138-2
  26. Sante, I., A.M. Garcia, D. Miranda and R. Crecente. 2010. Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landscape and Urban Planning 96(2):108-122. https://doi.org/10.1016/j.landurbplan.2010.03.001
  27. Stevens, D., S. Dragicevic and K. Rothley. 2007. iCity: A GIS-CA modelling tool for urban planning and decision making. Environmental Modelling and Software 22(6):761-773. https://doi.org/10.1016/j.envsoft.2006.02.004
  28. Torrens, P.M. and I. Benenson. 2005. Geographic automata systems. International Journal of Geographical Information Science 19(4):385-412. https://doi.org/10.1080/13658810512331325139
  29. van Vliet, J., A.K. Bregt, D.G. Brown, H. van Delden, S. Heckbert and P.H. Verburg. 2016. A review of current calibration and validation practices in land-use change modelling. Environmental Modeling and Software 82:174-182. https://doi.org/10.1016/j.envsoft.2016.04.017
  30. Verburg, P.H., W. Soepboer, A. Veldkamp, R. Limpiada, V. Espaldon and S.S. Mastura. 2002. Modeling the spatial dynamic of regional land use: the CLUE -S model. Environmental Management 30(3):391-405. https://doi.org/10.1007/s00267-002-2630-x
  31. Verburg, P.H., J.R.R. van Eck, T.C.M. de Nijs, H. Visser and K. de Jong. 2004. A method to analyze neighborhood characteristics of land use patterns. Computers, Environment and Urban Systems 28(6):667-690. https://doi.org/10.1016/j.compenvurbsys.2003.07.001
  32. Verburg, P.H., A. Veldkamp and M.D.A. Rounsevell. 2006. Scenario-based studies of future land use in Europe. Agriculture, Ecosystems and Environment 114:1-6. https://doi.org/10.1016/j.agee.2005.11.023
  33. Wang, F. and D.J. Marceau. 2013. A patch-based cellular automaton for simulating land-use changes at fine spatial resolution. Transactions in GIS 17(6): 828-846. https://doi.org/10.1111/tgis.12009
  34. White, R. and G. Engelen. 1993. Cellular automata and fractal urban form: A cellular modeling approach to the evolution of urban land-use patterns. Environment and Planning A 25:1175-1199. https://doi.org/10.1068/a251175
  35. Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for connected learning and computer-based modelling, Northwestern University, Evanston, Illinois.
  36. Wu, F. 2002. Calibration of stochastic cellular automata: The application to rural-urban land conversions. International Journal of Geographical Information Science 16(8):795-818. https://doi.org/10.1080/13658810210157769
  37. Yao, Y., X. Liu, X. Li, P. Liu, Y. Hong, Y. Zhang and K. Mai. 2017. Simulating urban land-use changes at a large scale by integrating dynamic land parcel subdivision and vector-based cellular automata. International Journal of Geographical Information Science 31(12): 2452-2479. https://doi.org/10.1080/13658816.2017.1360494