• Title/Summary/Keyword: cellular ATP

Search Result 188, Processing Time 0.022 seconds

Studies on the activities of ALPase, ACPase, ATPase and accumulation of volutin granules upon growth phase in saccharomyces uvarum (Saccharomyces uvarum의 배양시기에 따른 ALPase, ACPase, ATPase 활성도와 volutin과립 축적량)

  • 이기성;최영길
    • Korean Journal of Microbiology
    • /
    • v.23 no.2
    • /
    • pp.90-100
    • /
    • 1985
  • The present study was designed to investigate cellular regulation of phosphate metabolism between catabolically repressed and derepressed states in yeast (Saccharomyces uvarum). The activities of various phospatases and the contents of phosphate compounds were detected according to the culture phase and various phosphate concentrations. As the results, Saccharomyces uvarum derepressed many phosphate metabolizing enzymes such as alkaline phosphatase, acid phosphatase and ATPase more than ten fold simultaneously during catabolic repression (phospgate and sugar starvation). At the same state, the amounts of orthophosphate, nucleotidic labile phosphate and acid soluble polypgosphate were increased, compared to basal levels of normally cultivated cells. $Mg^{++}-stimulated$ type among all phospatases was appeared to have most of the enzyme activity. It could be postulated that $K^+ -stimulated$ alkaline phosphatase was directly or indirectly correlated with the synthesis of acid insoluble polyphosphate $Mg^{++}-stimulated$ phosphatase with the degradation of polyphosphates. In case of cultivation in the medium supplemented with sugar and phosphate (catabolic derepression), phospgatase activities except for alkaline phosphatase were decreased rapidly through the progressive batch culture, After 12 hrs culture, at early exponential phase, the cellular accumulation of acid insoluble polyphosphate increased about 5 fold, compared to those of the starved cells. Under catabolic repression, it could be postulated that intracellular phosphate metabolism was regulated by derepressions of phosphatases. The function of polyphosphate system was shown to compensate the ATP/ADP system as phosphate donor and energy source especially during catabolic repression.

  • PDF

The Molecular Functions of RalBP1 in Lung Cancer

  • Lee, Seunghyung
    • Biomedical Science Letters
    • /
    • v.20 no.2
    • /
    • pp.49-55
    • /
    • 2014
  • RalBP1 is an ATP-dependent non-ABC transporter, responsible for the major transport function in many cells including many cancer cell lines, causing efflux of glutathione-electrophile conjugates of both endogenous metabolites and environmental toxins. RalBP1 is expressed in most human tissues, and is over-expressed in non-small cell lung cancer cell lines and in many other tumor types. Blockade of RalBP1 by various approaches has been shown to increase sensitivity to radiation and chemotherapeutic drugs, leading to cell apoptosis. In xenograft tumor models in mice, RalBP1 blockade or depletion results in complete and sustained regression across many cancer cell types including lung cancer cells. In addition to its transport function, RalBP1 has many other cellular and physiological functions, based on its domain structure which includes a unique Ral-binding domain and a RhoGAP catalytic domain, as well as docking sites for multiple signaling proteins. Additionally, RalBP1 is also important for stromal cell function in tumors, as it was recently shown to be required for efficient endothelial cell function and angiogenesis in solid tumors. In this review, we discuss the cellular and physiological functions of RalBP1 in normal and lung cancer cells.

Nuclear UPF1 Is Associated with Chromatin for Transcription-Coupled RNA Surveillance

  • Hong, Dawon;Park, Taeyoung;Jeong, Sunjoo
    • Molecules and Cells
    • /
    • v.42 no.7
    • /
    • pp.523-529
    • /
    • 2019
  • mRNA quality is controlled by multiple RNA surveillance machineries to reduce errors during gene expression processes in eukaryotic cells. Nonsense-mediated mRNA decay (NMD) is a well-characterized mechanism that degrades error-containing transcripts during translation. The ATP-dependent RNA helicase up-frameshift 1 (UPF1) is a key player in NMD that is mostly prevalent in the cytoplasm. However, recent studies on UPF1-RNA interaction suggest more comprehensive roles of UPF1 on diverse forms of target transcripts. Here we used subcellular fractionation and immunofluorescence to understand such complex functions of UPF1. We demonstrated that UPF1 can be localized to the nucleus and predominantly associated with the chromatin. Moreover, we showed that UPF1 associates more strongly with the chromatin when the transcription elongation and translation inhibitors were used. These findings suggest a novel role of UPF1 in transcription elongation-coupled RNA machinery in the chromatin, as well as in translation-coupled NMD in the cytoplasm. Thus, we propose that cytoplasmic UPF1-centric RNA surveillance mechanism could be extended further up to the chromatin-associated UPF1 and co-transcriptional RNA surveillance. Our findings could provide the mechanistic insights on extensive regulatory roles of UPF1 for many cellular RNAs.

A Study on the Protective Effects of Glutathione on Cytotoxicity of Mercury and Cadmium (수은 및 카드뮴의 세포독성에 대한 Glutathione의 역할에 관한 연구)

  • Jeong, Jae-Ho;Kim, Jun-Youn;Koh, Dai-Ha
    • Journal of Preventive Medicine and Public Health
    • /
    • v.32 no.2
    • /
    • pp.170-176
    • /
    • 1999
  • Objectives: To evaluate the protective effects of glutathione (GSH) on the cytotoxicity of mercurial compounds$(CM_3HgCl,\;HgCl_2)$ or cadmium chloride$(CdCl_2)$ in EMT-6 cells. Methods: The compounds investigated were $CH_3HgCl,\;HgCl_2,\;CdCl_2$, GSH, buthionine Sulfoximine(BSO), L-2-oxothiazolidine-4-carboxylic acid(OTC). Cytotoxicity analysis consist of nitric oxide(NO) production, ATP production and cell viability. Results: Mercurial compounds and cadmium chloride significantly decreased cell viability and the synthesis of NO and cellular ATP in EMT-6 cells. GSH was not toxic at concentrations of 0-1.6 mM. In the presence of GSH, mercurial compounds and cadmium did not decrease the production of ATP and nitrite in EMT-6 cells. The protective effects of GSH against the cytotoxicity of mercurial compounds and cadmium depended on the concentration of added GSH to the culture medium for EMT-6 cells. We evaluated the effects of intracellular GSH level on mercury- or cadmium-induced cytotoxicity by the pretreatment experiments. Pretreatment of GSH was not changed ${NO_2}^-$ and ATP production, and pretreatment of BSO was decreased in dose and time-dependent manner. Pretreatment of OTC was increased ${NO_2}^-$ and ATP production in dose- and tine-dependent manner. Because intracellular GSH level was increased by OTC pretreatment, the protective effect on mercury- and cadmium-induced cytotoxicity was increased. Conclusions: These results indicated that sulfhydryl compounds had the protective effects against mercury-induced cytotoxicity by the intracellular GSH levels.

  • PDF

Effect of Ouabain on the Interaction of Mitochondria with Calcium (Mitochondria의 Calcium Uptake에 미치는 Ouabain의 영향)

  • Hong, Sa-Ack;Park, Chan-Woong;Kim, Myung-Suk;Chung, Myung-Hee
    • The Korean Journal of Pharmacology
    • /
    • v.8 no.1
    • /
    • pp.67-75
    • /
    • 1972
  • Many studies on the mechanism of the inotropic action of cardiac glycosides have shown the possible intimate relationship between the mobilization of intracellular calcium and inotropic effect. Evidence obtained from recent studies suggests that cardiac glycosides may increase the intracellular $Ca^{++}$ concentration through the release of this ion from cellular or intracellular membrane. It seemed imperative to study the effect of ouabain on the interaction between mitochondria and $Ca^{++}$, because mitochondria are known to have a rather powerful $Ca^{++}$ pump mechanism which may have an important role on the regulation of intracellular $Ca^{++}$ concentration. The present investigations was made into the effect of ouabain on $Ca^{++}$ untake of mitochondria in the presence of ATP and its dependence on $K^+$ and $Na^+$ in the medium. The results are summarized as follows: 1. The rate of rise in the turbidity of superprecipitation was solely influenced by ionic strength of the medium, not by the species of ion, i.e. $Na^+$ or $K^+$. The higher ionic strength suppressed and the lower enhanced the rate of superprecipitation respectively. 2. No effect of ouabain was found on the rate of superprecipitation. 3. Mitochondria depressed the rate of superpretipitation, and the depressed rate of superprecipitation by mitochondria was reversed by ouabain, and the degree of this reversal was almost identical in $Na^+$ and $K^+$ medium. 4. $Ca^{++}$ uptake of mitochondria was inhibited by ouabain in the presence of ATP and the degree of inhibition showed the dose-response manner in terms of concentration of ouabain. 5. In the absence of ATP, mitochondria took or the $Ca^{++}$ in initial period but released it later. Such uptake and release of $Ca^{++}$ was not influenced by ouabain. 6. It is suggested that intracellular calcium mobilization by ouabain through the action upon the mitochondria was due to inhibition on ATP-dependent $Ca^{++}$ uptake by this agent, not to the action upon so called binding.

  • PDF

Mechanism of Inhibition of ${\alpha}$-Methylglucose Uptake by Cisplatin in $LLC-PK_1$ (시스플라틴에 의한 $LLC-PK_1$의 알파-메틸글루코스 흡수 감소 기전)

  • Seo, Kyung-Won;Kim, Hyo-Jung;Choung, Se-Young
    • YAKHAK HOEJI
    • /
    • v.40 no.6
    • /
    • pp.705-712
    • /
    • 1996
  • We have previously shown that determination of glucose uptake using ${\alpha}$-methylglucose(${\alpha}$-MG) is very sensitive and rapid parameter for the assessment of loss of cellular fu nction in renal cell line($LLC-PK_1$). The present study was designed to elucidate the mechanism of inhibition of ${\alpha}$-MG uptake and the intracellular site of toxic action of cisplatin(CIS). $LLC-PK_1$ cells were exposed to various concentrations(5 ${\mu}$M-l00 ${\mu}$M) of CIS for 5 hrs or 24 hrs and ${\alpha}$-MG uptake was determined. Mitochondrial function was evaluated by measuring intracellular ATP content and MTT reduction. The activities of marker enzymes for the basolateral membrane(Na$^+$-K$^+$ ATPase) and brush border membrane (alkaline phosphatase: ALP) were also measured. CIS treatment significantly inhibited the ${\alpha}$-MG uptake in a time- and dose-dependent manner above 25 ${\mu}$M for 5 hrs. Intracellular ATP content and MTT reduction were affected by 24 hr-treatment of 50 ${\mu}$M CIS. The activities of Na$^+$-K$^+$ ATPase and ALP were significantly decreased at 10 ${\mu}$M and 5 ${\mu}$M of CIS for 24 hrs, respectively. The incubation with CIS for 5 hrs had no effects on the intracellular ATP content, MTT reduction and the activities of marker enzymes up to 100 ${\mu}$M. These results partly indicate that inhibition of ${\alpha}$-MG uptake by CIS may not be attributed to the disturbance of mitochondrial function or inhibition of the activity of Na$^+$-K$^+$ ATPase and can be resulted from direct effect of CIS on the Na$^+$/glucose cotransporter in brush border membrane. This study shows that additional mechanistic information, indicating the intracellular site of nephrotoxic action, can be gained by coupling the ${\alpha}$-MG uptake and ATP content or the activity of Na$^+$-K$^+$ ATPase.

  • PDF

Raloxifene Induces Autophagy-Dependent Cell Death in Breast Cancer Cells via the Activation of AMP-Activated Protein Kinase

  • Kim, Dong Eun;Kim, Yunha;Cho, Dong-Hyung;Jeong, Seong-Yun;Kim, Sung-Bae;Suh, Nayoung;Lee, Jung Shin;Choi, Eun Kyung;Koh, Jae-Young;Hwang, Jung Jin;Kim, Choung-Soo
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.138-144
    • /
    • 2015
  • Raloxifene is a selective estrogen receptor modulator (SERM) that binds to the estrogen receptor (ER), and exhibits potent anti-tumor and autophagy-inducing effects in breast cancer cells. However, the mechanism of raloxifene-induced cell death and autophagy is not well-established. So, we analyzed mechanism underlying death and autophagy induced by raloxifene in MCF-7 breast cancer cells. Treatment with raloxifene significantly induced death in MCF-7 cells. Raloxifene accumulated GFP-LC3 puncta and increased the level of autophagic marker proteins, such as LC3-II, BECN1, and ATG12-ATG5 conjugates, indicating activated autophagy. Raloxifene also increased autophagic flux indicators, the cleavage of GFP from GFP-LC3 and only red fluorescence-positive puncta in mRFP-GFP-LC3-expressing cells. An autophagy inhibitor, 3-methyladenine (3-MA), suppressed the level of LC3-II and blocked the formation of GFP-LC3 puncta. Moreover, siRNA targeting BECN1 markedly reversed cell death and the level of LC3-II increased by raloxifene. Besides, raloxifene-induced cell death was not related to cleavage of caspases-7, -9, and PARP. These results indicate that raloxifene activates autophagy-dependent cell death but not apoptosis. Interestingly, raloxifene decreased the level of intracellular adenosine triphosphate (ATP) and activated the AMPK/ULK1 pathway. However it was not suppressed the AKT/mTOR pathway. Addition of ATP decreased the phosphorylation of AMPK as well as the accumulation of LC3-II, finally attenuating raloxifene-induced cell death. Our current study demonstrates that raloxifene induces autophagy via the activation of AMPK by sensing decreases in ATP, and that the overactivation of autophagy promotes cell death and thereby mediates the anti-cancer effects of raloxifene in breast cancer cells.

Magnolol Inhibits LPS-induced NF-${\kappa}B$/Rel Activation by Blocking p38 Kinase in Murine Macrophages

  • Li, Mei Hong;Kothandan, Gugan;Cho, Seung-Joo;Huong, Pham Thi Thu;Nan, Yong Hai;Lee, Kun-Yeong;Shin, Song-Yub;Yea, Sung-Su;Jeon, Young-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.353-358
    • /
    • 2010
  • This study demonstrates the ability of magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, to inhibit LPS-induced expression of iNOS gene and activation of NF-${\kappa}B$/Rel in RAW 264.7 cells. Immunohisto-chemical staining of iNOS and Western blot analysis showed magnolol to inhibit iNOS gene expression. Reporter gene assay and electrophoretic mobility shift assay showed that magnolol inhibited NF-${\kappa}B$/Rel transcriptional activation and DNA binding, respectively. Since p38 is important in the regulation of iNOS gene expression, we investigated the possibility that magnolol to target p38 for its anti-inflammatory effects. A molecular modeling study proposed a binding position for magnolol that targets the ATP binding site of p38 kinase (3GC7). Direct interaction of magnolol and p38 was further confirmed by pull down assay using magnolol conjugated to Sepharose 4B beads. The specific p38 inhibitor SB203580 abrogated the LPS-induced NF-${\kappa}B$/Rel activation, whereas the selective MEK-1 inhibitor PD98059 did not affect the NF-${\kappa}B$/Rel. Collectively, the results of the series of experiments indicate that magnolol inhibits iNOS gene expression by blocking NF-${\kappa}B$/Rel and p38 kinase signaling.

Effects of exercise on obesity-induced mitochondrial dysfunction in skeletal muscle

  • Heo, Jun-Won;No, Mi-Hyun;Park, Dong-Ho;Kang, Ju-Hee;Seo, Dae Yun;Han, Jin;Neufer, P. Darrell;Kwak, Hyo-Bum
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.6
    • /
    • pp.567-577
    • /
    • 2017
  • Obesity is known to induce inhibition of glucose uptake, reduction of lipid metabolism, and progressive loss of skeletal muscle function, which are all associated with mitochondrial dysfunction in skeletal muscle. Mitochondria are dynamic organelles that regulate cellular metabolism and bioenergetics, including ATP production via oxidative phosphorylation. Due to these critical roles of mitochondria, mitochondrial dysfunction results in various diseases such as obesity and type 2 diabetes. Obesity is associated with impairment of mitochondrial function (e.g., decrease in $O_2$ respiration and increase in oxidative stress) in skeletal muscle. The balance between mitochondrial fusion and fission is critical to maintain mitochondrial homeostasis in skeletal muscle. Obesity impairs mitochondrial dynamics, leading to an unbalance between fusion and fission by favorably shifting fission or reducing fusion proteins. Mitophagy is the catabolic process of damaged or unnecessary mitochondria. Obesity reduces mitochondrial biogenesis in skeletal muscle and increases accumulation of dysfunctional cellular organelles, suggesting that mitophagy does not work properly in obesity. Mitochondrial dysfunction and oxidative stress are reported to trigger apoptosis, and mitochondrial apoptosis is induced by obesity in skeletal muscle. It is well known that exercise is the most effective intervention to protect against obesity. Although the cellular and molecular mechanisms by which exercise protects against obesity-induced mitochondrial dysfunction in skeletal muscle are not clearly elucidated, exercise training attenuates mitochondrial dysfunction, allows mitochondria to maintain the balance between mitochondrial dynamics and mitophagy, and reduces apoptotic signaling in obese skeletal muscle.

THE EFFECT OF RISPERIDONE ON SALIVARY GLAND CELLS (리스페리돈이 타액선 세포에 미치는 영향)

  • Lee, Yeon-Joo;Kim, Yeong-Jae;Kim, Jung-Wook;Jang, Ki-Taek;Kim, Chong-Chul;Hahn, Se-Hyun;Lee, Sang-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.1
    • /
    • pp.47-56
    • /
    • 2008
  • Risperidone is a widely prescribed atypical antipsychotic agent. Approved by the FDA as the first drug to treat irritability associated with autism in children, it is also used to treat tic disorder and Tourette's syndrome. Its adverse reactions related to dentistry include dry mouth, the mechanism of which is yet to be identified. The aim of this study is to identify, at the cellular level, how and to what extent risperidone affects intracellular free calcium concentration ($[Ca^{2+}]_i$), an primary intracellular factor in the regulation of fluid secretion in salivary gland cells. The human salivary gland cell line (HSG) was grown in MEM supplemented with 10% BCS. In order to measure $[Ca^{2+}]_i$, Fura-2/AM was loaded in the HSG, and fluorescence at 340 nm/380 nm excitation was measured in the 500 nm emission ratio. After every experiment, a calibration experiment was conducted in order to readjust the ratio to the actual $[Ca^{2+}]_i$. Changes in $[Ca^{2+}]_i$ were measured in the presence of carbachol, ATP and histamine. The researcher then explored how the pretreatment of risperidone affected such changes. Findings of this study include: 1. In HSG, $[Ca^{2+}]_i$ increased due to the addition of carbachol, ATP and histamine. The presence of risperidone inhibited the action of histamine on this process, while making little effect on that of carbachol and ATP. 2. A quantification of $[Ca^{2+}]_i$ in relation to histamine of different concentrations indicates that the effect of histamine was concentration dependent with an $EC_{50}$ of $3.3{\pm}0.5\;{\mu}M$. 3. The inhibitory effect of risperidone on histamine-induced $[Ca^{2+}]_i$ was concentration-dependent with an $IC_{50}$ of $104.4{\pm}14\;nM$. 4. Risperidone inhibits histamine-induced Ca2+ release from endoplasmic reticulum and influx of extracellular $Ca^{2+}$ in HSG cells(p<0.05).

  • PDF