• Title/Summary/Keyword: cell-free protein synthesis

Search Result 78, Processing Time 0.024 seconds

A PROMISING NEW ANTI-WRINKLE INGREDIENT: Pericarpium castaneae extracts

  • Kim, Beom-Jun;Jo, Byoung-Kee;Kim, Jeong-Ha
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.4 s.34
    • /
    • pp.57-63
    • /
    • 1999
  • Pericarpium castaneae extracts have variously potent activities, such as anti-oxidative activity and free radical scavenging activity. in vivo and in vitro studies both indicate that pericarpium castaneae extracts acts as a free radical scavenger($IC_{50}:7.6{\mu}g/ml$) stronger than gallic acid($IC_{50}:12.5{\mu}g/ml$) and ellagic acid($IC_{50}:15{\mu}g/ml$) which could prevent cutaneous UV damages and skin aging. The extracts showed a good effect as a anti-oxidant($IC_{50}:50{\mu}g/ml$). It was shown that the appearance of wrinkle in human skin was reduced by topical application of pericarpium castaneae extracts. And the treatment of human skin with the extracts increased the elasticity and moisture of the skin. We investigated the effect of the pericarpium castaneae extracts on production of extracellular matrix using cultured A431 fibroblast cells. The results indicated that the extracts had no detectable effect on collagen synthesis. But synthesis of cell adhesion protein was increased by the extracts. The results suggest that increase of cell adhesion protein synthesis by pericarpium castaneae extracts has closely related to reduction of wrinkle in skin.

  • PDF

A PROMISING NEW ANTI-WRINKLE INGREDIENT : Pericarpium castaneae extracts

  • Kim, Beom-Jun;Jo, Byoung-Kee;Kim, Jeong-Ha
    • Proceedings of the SCSK Conference
    • /
    • 1999.10a
    • /
    • pp.57-64
    • /
    • 1999
  • Pericarpium castaneae extracts have variously potent activities, such as anti-oxidative activity and free radical scavenging activity. in vivo and in vivo studies both indicate that pericarpium castaneae extracts acts as a flee radical scavenger ($IC_{50}$/: 7.6$\mu\textrm{g}$/ml) stronger than gallic acid($IC_{50}$/: 12.5$\mu\textrm{g}$/ml) and ellagic acid($IC_{50}$/: 15$\mu\textrm{g}$/ml) which could prevent cutaneous UV damages and skin aging. The extracts showed a good effect as a anti-oxidant ($IC_{50}$/: 50$\mu\textrm{g}$/ml). It was shown that the appearance of wrinkle in human skin was reduced by topical application of pericarpium castaneae extracts. And the treatment of human skin with the extracts increased the elasticity and moisture of the skin. We investigated the effect of tile pericarpium castaneae extracts on production of extracellular matrix using cultured A431 fibroblast cells. The results indicated that the extracts had no detectable effect on collagen synthesis, But synthesis of cell adhesion protein was increased by the extracts. The results suggest that increase of cell adhesion protein synthesis by pericarpium castaneae extracts has closely related to reduction of wrinkle in skin.

  • PDF

INTRACELLULAR AMINO ACID PROFILE OF RUMEN BACTERIA AS INFLUENCED BY UREA FEEDING AND ITS DURATION

  • Kobayashi, Y.;Wakita, M.;Hoshino, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.4
    • /
    • pp.619-622
    • /
    • 1993
  • Rumen bacterial amino acids in sheep on urea diet were monitored to assess a possible change in amino acid synthesis as a long term response to high rumen ammonia environment. A sheep was fed a semipurified diet with soybean meal, followed by a diet with urea as a main nitrogen source. Mixed rumen bacteria were harvested from ruminal fluid taken 3 h after feeding (twice in soybean meal feeding and 6 times in urea feeding) and fractionated as cell wall, proteins and protein-free cell supernatant of monitor amino acids in each fraction. Ruminal ammonia concentration at the sampling ranged from 5.7 to 39.5 mgN/dl. Cell wall and protein fractions of mixed rumen bacteria were stable in their amino acid composition regardless of nitrogen sources of diet and the feeding duration. However, protein-free cell supernatant fraction showed a higher alanine proportion with urea feeding (18.6 and 28.2 molar % of alanine for samples from sheep fed soybean meal and urea, respectively) and its duration (20.6 and 32.9 molar % for samples from sheep on urea diet for 1 and 65 days, respectively). Total free amino acid level of bacteria was depressed in the initial period of urea feeding but restored on 65th day of the feeding. These results suggest that an alanine synthesizing system may develop in rumen bacteria as urea feeding becomes longer.

Effect of micronutritional-element deficiencies on the metabolism of Chlorella cells. (II) On the biosynthetic activities of protein, nucleic acids and phospholipid (Chlorella 의 물질대사에 미치는 미양원소의 결핍효과(제 2 ) -, 리보 및 의 생합성능에 관하여-)

  • Lee, Yung-Nok;Chin, Pyung;Sim, Woong-Seop
    • Korean Journal of Microbiology
    • /
    • v.6 no.1
    • /
    • pp.22-28
    • /
    • 1968
  • Chlorella ellipsoidea cells were cultured in an iron, copper, zinc, manganese, molybdenum or boron-free medium. Biosynthetic activities of nucleic acids, protein and phospholipid in chlorella cells, which were growing in a microelement deficient medium were compared with those of the normal cells by measuring the contents of phosphate, amino acids or UV-absorbing substances in the various cell fractions. When the algae were grown in a molybdenum-free medium, the amounts of phosphate in the acid-soluble fraction of the cells increased, whereas the amounts of alkali-stable protein and RNA decreased compared with the normal cells showing that the synthesis of protein and RNA from the early products of photosynthesis was inhibited. When the algae were grown in a boron-free medium, amounts of alkali-labile protein and phospholipid of the cells decreased, while the amount of phosphate in acid-soluble fraction increased compared with the normal cells showing that the biosynthesis of protein and phospholipid from the early products of photosynthesis was retarded. In general, amounts of protein and RNA in the microelement deficient cells significantly decreased compared with those of the normal cells. Phosphate content in the acid-soluble fraction of the algal cell grown in an zinc, copper, molybdenum, or boron-free medium increased considerably, whereas that of the algal cell grown in an iron or manganese-free medium decreased remarkably compared with that of the control. It is considered, therefore, that molybdenum, zinc, copper and boron etc. play an important role in the biosyntbesis of macromolecule from acid-soluble phosphate compounds, in contrast to the principal action of iron and manganese on the photosynthetic process itself.

  • PDF

Regeneration of ATP through an Activated Glycolytic Pathway in a Cell-free Extract and its Application for Protein Expression (해당과정의 활성화를 통한 무세포 단백질 발현 시스템에서의 ATP 재생)

  • Kim Dong Myung;Keum Jeong Won;Kim Tae Wan;Oh In Seok;Choi Cha-yong
    • KSBB Journal
    • /
    • v.19 no.6 s.89
    • /
    • pp.467-470
    • /
    • 2004
  • We have investigated the key parameters affecting ATP regeneration in a cell-free protein synthesis system derived from Escherichia coli. When glucose-6-phosphate was used as an energy source, the efficiency of ATP regeneration sharply responded to pH change of reaction mixture. In addition, both productivity and reproducibility of protein synthesis was substantially enhanced by introducing appropriate amount of NAD into the reaction mixture. As a result, through the activation of glycolytic pathway under an optimal pH, the batch cell-free system produced over $300\;{\mu}g$ of protein in a 1 mL reaction.

An In Vitro Assay to Screen for Translation Inhibitors

  • Song, Chin-Hee;Paik, Hyoung-Rok;Seong, Chi-Nam;Choi, Sang-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1646-1649
    • /
    • 2006
  • Protein synthesis is the ultimate outcome of gene expression which, in turn, is regulated by several translation factors. We attempted to identify substances that can inhibit the translation process in vitro when the outcome protein is luciferase. To this end, we developed a sensitive cell-free protein synthesis assay using luciferase as the reporter. The synthesis of luciferase increased proportionately as mRNA was added to a $15-{\mu}l$reaction medium in concentrations raging from 5 ng to 500 ng. The maximum amount of luciferase was synthesized when the media were incubated at $25^{\circ}C$ for 40 min. The concentration of each compound that inhibited luciferase production by 50% ($IC_{50}$) was calculated. Hygromycin, puromycin, and cycloheximide yielded an $IC_{50}$ of 0.008, 0.8, and $0.7{\mu}g/ml$, respectively. A filtrate of Streptomyces spp. isolates inhibited protein synthesis up to S-fold when added to the in vitro translation assay mixture.

Chronic Treatment of Ethanol Inhibits Proliferation of Normal Fibroblasts, but Not Oncogenic ras-Transformed Cells

  • Gu, Young-Hwa;Park, Mi-Sun;Jhun, Byung-H.
    • Biomolecules & Therapeutics
    • /
    • v.6 no.4
    • /
    • pp.345-350
    • /
    • 1998
  • The adverse effects of ethanol on cell proliferation have been described for a variety of tissues and cells. In the present study, we investigated whether chronic ethanol intoxication impairs the cell proliferation and DNA synthesis induced by oncogenic $H-ras^{V12}$ - and $v-K-ras^{V12}$-transformed cells. Ethanol treatment inhibited the cell proliferation and the DNA synthesis of control parental fibroblasts in a time- and dose-dependent manner. In contrast, ethanol did not suppress the proliferation of either oncogenic $H-ras^{V12}$ - or $v-K-ras^{V12}$ -transformed fibroblasts. Microinjection of oncogenic $H-Ras^{V12}$ protein induces DNA synthesis and ethanol treatment did not interfere with the DNA synthesis. The antiproliferative toxicity of ethanol was rescued by antioxidants, such as N-acetylcysteine and 4-methlpyrazole. These results indicate that the antiproliferative action site of ethanol toxicity lies upstream or is independent of Ras and ethanol exerts its toxicity through a free radical formation.

  • PDF

Regulation of Protein Degradation by Proteasomes in Cancer

  • Jang, Ho Hee
    • Journal of Cancer Prevention
    • /
    • v.23 no.4
    • /
    • pp.153-161
    • /
    • 2018
  • Imbalance of protein homeostasis (proteostasis) is known to cause cellular malfunction, cell death, and diseases. Elaborate regulation of protein synthesis and degradation is one of the important processes in maintaining normal cellular functions. Protein degradation pathways in eukaryotes are largely divided into proteasome-mediated degradation and lysosome-mediated degradation. Proteasome is a multisubunit complex that selectively degrades 80% to 90% of cellular proteins. Proteasome-mediated degradation can be divided into 26S proteasome (20S proteasome + 19S regulatory particle) and free 20S proteasome degradation. In 1980, it was discovered that during ubiquitination process, wherein ubiquitin binds to a substrate protein in an ATP-dependent manner, ubiquitin acts as a degrading signal to degrade the substrate protein via proteasome. Conversely, 20S proteasome degrades the substrate protein without using ATP or ubiquitin because it recognizes the oxidized and structurally modified hydrophobic patch of the substrate protein. To date, most studies have focused on protein degradation via 26S proteasome. This review describes the 26S/20S proteasomal pathway of protein degradation and discusses the potential of proteasome as therapeutic targets for cancer treatment as well as against diseases caused by abnormalities in the proteolytic system.