• Title/Summary/Keyword: cell well

Search Result 7,177, Processing Time 0.041 seconds

Optical Characteristics of Near-monolayer InAs Quantum Dots

  • Kim, Yeong-Ho;Kim, Seong-Jun;No, Sam-Gyu;Park, Dong-U;Kim, Jin-Su;Im, In-Sik;Kim, Jong-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.293-294
    • /
    • 2011
  • It is known that semiconductor quantum-dot (QD) heterostructures have superior zero-dimensional quantum confinement, and they have been successfully applied to semiconductor laser diodes (QDLDs) for optical communication and infrared photodetectors (QDIPs) for thermal images [1]. The self-assembled QDs are normally formed at Stranski-Krastanov (S-K) growth mode utilizing the accumulated strain due to lattice-mismatch existing at heterointerfaces between QDs and cap layers. In order to increase the areal density and the number of stacks of QDs, recently, sub-monolayer (SML)-thick QDs (SQDs) with reduced strain were tried by equivalent thicknesses thinner than a wetting layer (WL) existing in conventional QDs (CQDs) by S-K mode. Despite that it is very different from CQDs with a well-defined WL, the SQD structure has been successfully applied to QDIP[2]. In this study, optical characteristics are investigated by using photoluminescence (PL) spectra taken from self-assembled InAs/GaAs QDs whose coverage are changing from submonolayer to a few monolayers. The QD structures were grown by using molecular beam epitaxy (MBE) on semi-insulating GaAs (100) substrates, and formed at a substrate temperature of 480$^{\circ}C$ followed by covering GaAs cap layer at 590$^{\circ}C$. We prepared six 10-period-stacked QD samples with different InAs coverages and thicknesses of GaAs spacer layers. In the QD coverage below WL thickness (~1.7 ML), the majority of SQDs with no WL coexisted with a small amount of CQDs with a WL, and multi-peak spectra changed to a single peak profile. A transition from SQDs to CQDs was found before and after a WL formation, and the sublevel of SQDs peaking at (1.32${\pm}$0.1) eV was much closer to the GaAs bandedge than that of CQDs (~1.2 eV). These revealed that QDs with no WL could be formed by near-ML coverage in InAs/GaAs system, and single-mode SQDs could be achieved by 1.5 ML just below WL that a strain field was entirely uniform.

  • PDF

Effect of Electrolyzed Water and Organic Acids on the Growth Inhibition of Listeria monocytogenes on Lettuce (전해수 및 유기산처리에 의한 양상치에 오염된 Listeria monocytogenes의 생육저해)

  • Park Boo-Kil;Oh Min-Hee;Oh Deog-Hwan
    • Food Science and Preservation
    • /
    • v.11 no.4
    • /
    • pp.530-537
    • /
    • 2004
  • This study was conducted to determine the inactivation effect of electrolyzed water and organic acids either alone or in combination on L. monocytogenes or natural microflora on lettuce. Acidic electrolyzed water completely inactivated L. monocytogenes in broth system within 60 sec, but alkalin electrolyzed water caused approximate 1.7 log CFU/g reduction. However, acidic electrolyzed water reduced only 2.5 log CFU/g of L. monocytogenes on lettuce, and similar antimicrobial effect was observed with alkalin electrolyzed water. In the meantime, acidic and alkaline electrolyzed water caused approximately 2 log CFU/g reduction compared to control, whereas both electrolyzed water combined with $1\%$ organic acids ranged from 2.6 to 3.7 log CFU/g reduction. Among the organic acids, both electrolyzed water combined with $1\%$ citric acid showed the strongest synergistic antimicrobial effect to reduce L. monocytogenes on lettuce as well as total counts, yeast and molds. When antimicrobials, alone or in combination were treated into L. monocytogenes inoculated lettuce at $5^{\circ}C\;and\;15^{\circ}C$ for designed periods, the combined alkalin electrolyzed water with $1\%$ citric acid showed the greatest potential to inhibit growth of the bacteria. According to Scanning Electron Microscopy(SEM), the treatment of electrolyzed alkali water in combination with $1\%$ citric acid highly reduced the growth of the L. monocytogenes compared to single treatment and resulted in causing the destruction of cell membrane.

Chemical compositions and functional characteristics of Korean and imported pomegranate (Punica granatum L.) (국내산과 수입산 석류의 화학적 성분과 기능적 특성)

  • Kim, Mi Sook;Yun, Seol Hee;Na, Hwan Sik;Park, Hark Jae;Choi, Gyeong Cheol;Yang, Soo In;Lee, Ji Heon
    • Food Science and Preservation
    • /
    • v.20 no.3
    • /
    • pp.342-347
    • /
    • 2013
  • In recent years, polyphenol-rich herbs, fruits and processed foods, which are made of plant origin, have attracted much attention due to their potential health benefits. Pomegranate (Punica granatum L.) is an important source of bioactive compounds and has been used to treat diseases because of its medicinal properties. This research was focused on characterizing Korea's national cultivar and a similar product from California, USA. To evaluate their bioactive compounds and pharmacological activities, their anti-oxidation and cancer inhibition properties, as well as their organic acid and free sugar contents, were investigated. The national cultivar had low total sugar and high organic acid contents, contrary to the imported product. The results showed that the peel of national cultivar had high polyphenol and ellagic acid contents compared to imported product. The free radical scavenging capacity was evaluated via 2,2-diphenyl-1-picrylhydrazyl (DPPH) and its positive correlation with the total polyphenol contents was found. The anti-cancer activity of methanol extracts revealed growth inhibition against the prostate cancer cell. These results signify that while pomegranate, national cultivar, is more sour than the imported product, its health benefits could be excellent. Also, the polyphenol compound content of the non-edible part (such as the peel and the seed) was higher than that of the juice. Thus, it is suggested that the byproduct of the juice extraction could be potentially used in other fields such as medicine or dietary agents.

Phase Behavior of Simvastatin Drug in Mixtures of Dichloromethane and Supercritical Carbon Dioxide and Microparticle Formation of Simvastatin Drug Usins Supercritical Anti-Solvent Process (디클로로메탄과 초임계 이산화탄소의 혼합용매에서 Simvastatin 약물의 상거동과 초임계 역용매 공정을 이용한 Simvastatin 약물 미세입자의 제조)

  • Oh, Dong-Joon;Lee, Byung-Chul
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.34-45
    • /
    • 2007
  • Phase behavior of the ternary systems of water-insoluble simvastatin drug, which is well known to be effective drugs for hypercholesterolemia therapy, in solvent mixtures of dichloromethane and supercritical carbon dioxide was investigated to present a guideline of establishing operating conditions in the particle formation of the drugs by a supercritical anti-solvent recrystallization process utilizing dichloromethane as a solvent and carbon dioxide as an anti-solvent. The solubilities of simvastatin in the mixtures of dichloromethane and carbon dioxide were determined as functions of temperature, pressure and solvent composition by measuring the cloud points of the ternary mixtures at various conditions using a high-pressure phase equilibrium apparatus equipped with a variable-volume view cell. The solubility of the drug increased as the dichloromethane composition in solution and the system pressure increases at a fixed temperature. A lower solubility of the drug was obtained at a higher temperature. The second half of this work is focused on the particle formation of the simvastatin drug by a supercritical anti-solvent recrystallization process in a cylindrical high-pressure vessel equipped with an impeller. Microparticles of the simvastatin drug were prepared as functions of pressure (8 MPa to 12 MPa), temperature (303.15 K, 313,15 K), feed flow rate of carbon dioxide, and stirring speed (up to 3000 rpm), in order to observe the effect of those process parameters on the size and shape of the drug microparticles recrystallized.

  • PDF

Selective Adsorption of Sulfur Compounds from Natural Gas Fuel Using Nanoporous Molecular Sieves (나노세공 분자체를 이용한 천연가스 연료로부터 황 화합물의 선택적 흡착)

  • Kim, Hoon-Sung;Chung, Jong-Kook;Lee, Seok-Hee;Cheon, Jae-Kee;Moon, Myung-Joon;Woo, Hee-Chul
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.64-71
    • /
    • 2007
  • The selection of a suitable adsorbent for removing organic sulfur compounds tetrahydrothiophene (THT) and t-butylmercaptan (TBM) from natural gas has been carried out. The saturation adsorption capacity for the sulfur compounds were determined by pulse adsorption method for a group of nanoporous materials, including Na-Y, Na-ZSM-5, Na,K-ET(A)S-10, Na-Mordenite, Na,K-Clinoptitolite, Ti/MCM-41, Ti/SBA-15 and amorphous titanosilicates. Among the materials tested, Na-Y and Na,K-ET(A)S-10 zeolites showed high adsorptive capacities for THT and TBM. The saturation capacity for THT on Na,K-ETS-10 was comparable with that on Na-Y zeolite, which is well known as an effective adsorbent. The capacity and adsorptivity for THT and TBM on Na,K-ETAS-10 were improved by an increase in crystallinity of Na,K-ETAS-10. An investigation of the competitive adsorption between THT and TBM from the breakthrough test using a simulated natural gas indicates that Na,K-ETS-10 selectively adsorbs THT. The breakthrough capacity for THT on Na,K-ETS-10 was 1.19 mmol/g. The results show that the high adsorption performance of Na.K-ETS-10 and Na,K-ETAS-10 is due to the highly exchanged cations in the zeolitic structure which exhibit the strong electrostatic interactions with organic sulfur compounds and their wide pore nature.

  • PDF

Technical Trends of Hydrogen Production (수소생산 기술동향)

  • Ryi, Shin-Kun;Han, Jae-Yun;Kim, Chang-Hyun;Lim, Hankwon;Jung, Ho-Young
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.121-132
    • /
    • 2017
  • The increase of greenhouse gases and the concern of global warming instigate the development and spread of renewable energy and hydrogen is considered one of the clean energy sources. Hydrogen is one of the most elements in the earth and exist in the form of fossil fuel, biomass and water. In order to use hydrogen for a clean energy source, the hydrogen production method should be eco-friendly and economic as well. There are two different hydrogen production methods: conventional thermal method using fossil fuel and renewable method using biomass and water. Steam reforming, autothermal reforming, partial oxidation, and gasification (using solid fuel) have been considered for hydrogen production from fossil fuel. When using fossil fuel, carbon dioxide should be separated from hydrogen and captured to be accepted as a clean energy. The amount of hydrogen from biomass is insignificant. In order to occupy noticeable portion in hydrogen industries, biomass conversion, especially, biological method should be sufficiently improved in a process efficiency and a microorganism cultivation. Electrolysis is a mature technology and hydrogen from water is considered the most eco-friendly method in terms of clean energy when the electric power is from renewable sources such as photovoltaic cell, solar heat, and wind power etc.

Antioxidative Effects of Sulfur Containing Compounds in Garlic on Oxidation of Human Low Density Lipoprotein Induced by Macrophages and Copper Ion (마크로파아지 및 구리 이온으로 유도한 사람 low density lipoprotein의 산화에 대한 마늘 유황 화합물의 항산화 효과)

  • Yang, Seung-Taek
    • Journal of Life Science
    • /
    • v.18 no.1
    • /
    • pp.9-15
    • /
    • 2008
  • Sulfur containing compounds in garlic have all be used as one of the traditional folk medicine as well as food source. The present study was performed to investigate the antioxidative compounds of 1-methyl-1-cysteine, dimethyl trisulfide and 2-vinyl-4H-1,3-dithiin. The antioxidative activity of sulfur containing compounds on human LDL was investigated by monitoring a thiobarbituric acid substances (TBARS). Sulfur containing compounds inhibited on oxidation of LDL mediated by $CuSO_4$ and macrophages in dose dependent manner with almost completely inhibition at $80{\mu}g/ml$. Antioxidant activities of sulfur containing compounds on LDL oxidation were 2-vinyl-4H-1,3-dithiin, 1-methyl-1-cysteine, and dimethyl trisulfide in order. Inhibitory effects of sulfur containing compounds on oxidation of LDL mediated by $CuSO_4$ and macrophages were degraded at much greater rate than native LDL, the LDL oxidation process was arrested as shown by the lower conjugated dienes formation at the concentration of $60{\mu}g/ml$. Sulfur containing compounds in garlic revealed at high antioxidative activity at low physiological concentration for human LDL oxidation in vitro specially, it was indicated that the antioxidative activity of 3-viny l-4H-1,2-dithiin was higher than that of the other sulfur containing compounds.

Antiobesity Activity of Chrysanthemum zawadskii Methanol Extract (구절초 추출물의 항비만 활성)

  • Park, Jung Ae;Jin, Kyong-Suk;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.299-306
    • /
    • 2015
  • Chrysanthemum zawadskii, a herbaceous perennial plant belonging to the Compositae, grows wild in Asian countries, including Japan, China, and Korea. The biological, antioxidative, anti-inflammatory, and antibacterial activities of C. zawadskii have been reported, its antiobesity activity has not been elucidated. In the present study, the effect of C. zawadskii methanol extract (CZME) on pancreatic lipase enzyme activity, adipocyte differentiation, and adipogenesis was investigated using an in vitro assay and a cell model system. CZME effectively suppressed lipase enzyme activity in a dose-dependent manner. CZME also inhibited insulin, dexamethasone, 3-isobutyl-1-methylxanthine (MDI)-induced adipocyte differentiation, lipid accumulation, and the level of triglyceride in 3T3-L1 preadipocytes in a dose-dependent manner, without cytotoxicity. The antiobesity effect of CZME might be modulated by gene and protein expression of cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins (C/EBP) α, C/EBPβ, and the peroxisome proliferator-activated receptor γ (PPAR γ). CZME also triggered lipolysis in a dose-dependent manner in MDI-induced 3T3-L1 preadipocytes. Taken together, these results provide important new insights into the antiobesity activities of C. zawadskii, showing that they involve pancreatic lipase inhibition, as well as antiadipogenic and lipolysis effects. CZME might be a promising source in the field of nutraceuticals. However, the active compounds that confer the antiobesity activities of CZME need to be identified.

Manufacturing Sunsik Smoothie with Lactic Acid Bacteria and Germinated Grain Enzyme and Its Characteristics (유산균 및 발아효소를 첨가한 선식 스무디의 제조와 특성)

  • Choi, Sung-Rak;Shin, Jiyoung;Kim, Sung-Hoon;Kim, Jin-Hee;Yang, Ji-Young
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.206-213
    • /
    • 2015
  • Sunsik has been popular as well-being and healthy food to some Asian people, but it still has a limit to other foreigners because of its taste and appearance. This study tried to modify Sunsik into smoothie type for foreigners and investigate its physicochemical characteristics. Germinated black and brown rice was prepared. The germination condition of two cereals was steeping for 24 hr at room temperature, and then germinating for 24 hr at $30^{\circ}C$. After germination, the ${\alpha}$-amylase activity of germinated grains was 13~15 times higher than before germination. The enzyme activity of brown rice was 9.16 CU/g, but germinated brown rice was 152.63 CU/g. In case of black rice, enzyme activity before germination was 7.47 CU/g, and enzyme activity after germination was 97.96 CU/g. The lactic acid bacteria was grown in 50 g germinated brown rice powder with 100 ml malt solution, 30 g tomato juice, and 1.5 g rice bran. After manufacturing beverage using milk and Sunsik and the cell count of lactic acid bacteria was $1.3{\times}10^5CFU/ml$ enough to use starter. According to sensory test, the optimal concentration of Sunsik smoothie was 30 g Sunsik in 200 ml of milk. The viscosity was $5.97{\pm}1.2$ centipoise. The color of Sunsik beverage was evaluated as L value : $63.50{\pm}0.41$, a value: $-0.35{\pm}0.06$, and b value: $8.85{\pm}0.19$.

Adenoviral-Mediated Ref-1 Overexpression Potentiates NO Production in Bradykinin-Stimulated Endothelial Cells (Bradykinin으로 자극한 혈관내피세포에서 Ref-1의 세포내 과발현에 의한 NO 생성 증진 효과에 대한 연구)

  • Song, Ju-Dong;Kim, Kang-Mi;Lee, Sang-Kwon;Kim, Jong-Min;Park, Young-Chul
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.905-909
    • /
    • 2007
  • The dual-function protein redox factor-1 (Ref-1) is essential for base excision repair of oxidatively damaged DNA and also governs the activation of many redox-sensitive transcription factors. We examined the role of Ref-1 in regulation of nitric oxide (NO) synthesis employing adenoviral-mediatedoverexpression of Ref-1 in bradykinin-stimulated endothelial cells. Intracellular NO was detected with the NO-sensitive fluorophore DAF-2. Overexpression of Ref-1 potentiates bradykinin-stimulated NO production in endothelial cells. And, cells ifected with AdRef-1 showed higher fluorescence intensity compared with uninfected or AdD1312-infected cells. In parallel with this, over expression of Ref-1 also stimulated endothelial NO synthase (eNOS) enzyme activity, compared with unifected or AdD1312-infected cells, in bradykinin-stimulated cells as well as in unstimulated cells. These results suggest that Ref-1 implicates in endothelium-dependent vasorelaxation resulting from NO production in vascular system.