• Title/Summary/Keyword: cell wall polysaccharides

Search Result 67, Processing Time 0.025 seconds

Utilization of Fermented Milk and It's Health Promotion (유산균 발효유의 이용과 건강증진)

  • Lee, Jung-Lyoul;Huh, Chul-Sung;Baek, Young-Jin
    • Journal of Dairy Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.58-71
    • /
    • 1999
  • This study was designed to investigate the health promotion effect of fermented milk and historical story of Korean dairy products from the ancient period to present. Although the origin of fermented milk is Europe, the recede of fermented milk was founded in far-east and middle east areas at BC 4C. After the spread of fermented milk to Korea and Japan. The consumption of fermented milk in Korea was dramatically increased to 14.2 kg per person in 1997. Health promotion effect of fermented milk can be devided to 5 major effected improvements of intestinal microflora, anticancer, cholesterol assimilation anti-pathogenic activity. Fermented milk reduced the level of ${\beta}$-glucornidase and nitroreductase to 50% and it provides anticancer activity by cell wall an polysaccharides. Fermented milk has cholesterol assimilation activity ca. 54${\sim}$40% (B. longum, Str. thermophillus). Anti-pathogenic activity of fermented milk was significant. It appeared that Sal. ser. typhimurium was more susceptible than 5. coli 0157 at low pH fermented milk. Viable cells of E. coli 0157 were not dramatically decreased in most of fermented milks tested, but in general, Sal. ser. typhimurium was drastically decreased in most of the fermented milks.

  • PDF

Changes in Polysaccharides Content and Cell Morphology of Fomitopsis pinicola Mycelium during Submerged Culture (소나무잔나비버섯(Fomitopsis pinicola) 균사체 배양에 따른 함량 및 세포의 형태학적 변화)

  • Jung Yoo-Kyung;Shin Kyung-Ok;Park Hong-Duok;Kim Soon-Dong
    • Food Science and Preservation
    • /
    • v.13 no.3
    • /
    • pp.397-403
    • /
    • 2006
  • This experiment was conducted to examine the changes in polysaccharide concentration and morphological variation of Fomitopsis pinicola mycelium during submerged-culture in the citrus peel medium (CP). On the 12 days culture, the yields of mycelium and alcohol insoluble substance were 40.21%(w/v) and 6.94%(w/w), respectively, which were much higher than 11.29%(w/v, wet basis) and 3.17%(w/w, wet basis) obtained from YM medium. A large amount of acid soluble polysaccharides was derived from YM medium while a larger amount of alkali soluble polysaccharide was produced from CP medium. Yields of the mycelium were higher when cultured in CP medium However, there was no significant difference in formation of membranous vesicle between mycelia cultured in CP medium and YM medium. It was also observed that the formation of vacuole was closely related to the activation of the multivescular body known as cytolysome. As a result activation of mycelium and cell wall biosynthesis were more accelerated in CP medium.

The Effect of Hydrogen Peroxide Bleaching on the Properties of Unbleached Hardwood Kraft Pulp Adsorbed with Birchwood Xylan

  • Li, Lizi;Lee, Sang-Hoon;Lee, Hak-Lae;Youn, Hye-Jung
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.04a
    • /
    • pp.169-169
    • /
    • 2011
  • Xylans are polysaccharides present in large amounts in cell walls of land plants. However, during kraft cooking, a high portion of hemicelluloses including xylans are dissolved in the cooking liquor. In the current trend for a more effective utilization of biomass, attention has been paid to the exploitation of xylans as strength-enhancing additives for paper. It is believed that surface xylan adds flexibility to the cell wall/fiber surface, resulting in stronger fiber-fiber joints or greater contact area between the fibers. Accordingly, there is proposal for a new pulping process involving the extraction of xylan prior to pulping, followed by their re-adsorption on the unbleached pulp. A suitable bleaching process should be employed then, which ought to does not only improve the brightness of the pulp, but also remain the effect of the adsorption of xylan on pulp fibers. The objective of this research was to investigate the impact of hydrogen peroxide bleaching on the properties of unbleached hardwood kraft pulp pretreated with birchwood xylan by measuring optical properties (brightness, post color number, opacity) as well as physical properties (tensile index, tearing index, bulk) of handsheets made from the bleached pulp. In the meantime, the influence of process variables of peroxide bleaching including bleaching temperature, time, initial pH and $MgSO_4$ dosage were studied.

  • PDF

Decay of Populus cathay Treated with Paraffin Wax Emulsion and Copper Azole Compound

  • Liu, Jie;Liu, Min;Hou, Bingyi;Ma, Erni
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.21-32
    • /
    • 2019
  • In order to investigate the decay process of wood treated with preservative, waterproofing agent and their compound systems, a full-cell process was applied to impregnate the sapwood of poplar (Populus cathay) at paraffin wax emulsion concentrations of 0.5% and 2.0%, Copper Azole (CA) concentrations of 0.3% and 0.5%, and their four compound systems, respectively. Leaching tests and laboratory decay resistance against the white-rot fungus Corious versicolor (L.) Murrill for treated wood were carried out according to the America Standard E11-06 and China Standard GB/T 13942.1-2009. At certain time intervals during the decay test, samples were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction technique (XRD) to investigate the time-dependent changes of chemical components and crystalline structure, thus clarifying the decay mechanisms. The results suggested that white-rot fungi degrade hemicellulose and lignin in the wood cell wall first, followed by a simultaneous degradation of polysaccharides and lignin. Besides, CA could not only slower the decomposition of both hemicellulose and lignin, but also reduce the degradation amount of hemicellulose. However, paraffin wax emulsion at high concentration had a negative effect on the impregnation of CA for the compound system treated wood.

Non-Starch Polysaccharides of Cell Walls in Glutinous Rice, Rice and Black Rice (점미, 백미, 흑미 세포벽의 비전분성 다당류의 성분분석)

  • ;;Kimiko Othani
    • Journal of the Korean Home Economics Association
    • /
    • v.39 no.1
    • /
    • pp.91-102
    • /
    • 2001
  • The non-starch polysaccharides in the cell wall of rice, glutinous rice, and black rice, were analyzed. They were fractionated into fractions; water-soluble, hot writer-soluble, ammonium oxalate-soluble, sodium hydroxide-soluble, potassium hydroxide-soluble, and the alkali-insoluble, according to the solvent solubility. The dietary fiber contents were 5.4% in glutinous rice, 4.2% in rice and 7.5% in black rice. The sodium hydroxide soluble fibers were abundant in each kind of rice, especially 4.01% in black rice. The water soluble fibers were 80% of dietary fiber in glutinous rice, 66% in rice, 86% in black rice. It was supposed that the content of the water soluble fibers in rice was increased by pounding. Pectic substances in water soluble fibers, hot water soluble fibers, and ammonium oxalate soluble fibers fraction, were 2.4% in glutinous rice fraction,1.59% in rice, and 1.12% in black rice. Alkali soluble fibers were considered as hemicellulose. Black rice contained 5.80% of hemicellulose, which was more than twice as much as glutinous rice(2.58%) and rice(2.22%). Alkali insoluble fibers were considered as cellulose, which showed no considerable difference. Among samples content of uronic acid in glutinous rice, rice and black rice were 0.9%, 0.66%, 1.8% respectively. Uronic acid of black rice was twice more than other samples tested. The fraction of black rice that uronic acid was extracted at most was the fraction of sodium hydroxide. Mono saccharides of the fraction was the glucose, the arabinose, the xylose.

  • PDF

The Use of Lupins in Feeding Systems - Review -

  • Petterson, D.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.6
    • /
    • pp.861-882
    • /
    • 2000
  • The seed, or grain, of modern cultivars of Lupinus angustifolius, commonly known as Australian sweet lupins (ASL), is an established feed resource for the intensive animal industries of Australia, Japan, Korea and several other countries in Asia and Europe. Since the introduction of ASL to the world marketplace about 25 years ago, researchers in many countries have found them to be a valuable component of the diet of beef and dairy cattle, sheep, pigs, poultry, finfish and crustaceans. The seed of ASL contains ~32% crude protein (CP) (~35% DM basis) and 5% oil. The main storage carbohydrates in the seed are the ${\beta}$-galactans that comprise most of the cell-wall material of the kernel and the cellulose and hemicellulose of the thick seed coats. ASL seeds contain about 40% non-starch polysaccharides (NSP) and a negligible amount of starch. This makes them an excellent ingredient for ruminant diets, as the risk of acidosis is very low. The seed of modern cultivars of domesticated Lupinus species contain negligible amounts of lectins and trypsin inhibitors so they do not require preheating before being used as an ingredient in feeds for monogastric species. They have a high digestibility coefficient for protein, >90% for most species, but a low energy digestibility, ~60%, which is mostly due to the high content of NSP. The low content of methionine (0.22%) and of lysine (1.46%) is typical of the legumes. The lysine availability for pigs is >70%. Lupin kernels contain ~39% CP (~42% DM basis), 6% oil and 30% NSP. They have a higher digestible energy for pigs and finfish and a higher metabolisable energy for poultry than whole seed. Commercial operations rarely achieve complete separation of kernel from hull and it is more likely that the kernel fraction, called splits or meats, will contain ~36% CP. The replacement of soybean meal or peas with ASL in cereal-based diets for most intensively reared animals, birds and fish is possible provided lysine, methionine and digestible energy levels are kept constant. This makes ASL economically competitive in many, but not all, circumstances.

Cloning and Heterologous Expression of Acetyl Xylan Esterase from Aspergillus ficuum

  • Jeong, Hye-Jong;Park, Seung-Mun;Yang, Mun-Sik;Kim, Dae-Hyeok
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.153-156
    • /
    • 2000
  • Xylan, the major hemicellulose component of many plants, occurs naturally in a partially acetylated form and lignin, the most resistant component in plant cell wall degradation, is also attached to ${\beta}-1,4-linked-D-xylose$ backbone through the ester linkage. Esterases are required to release the esterified substituent and acetyl esterases are important in the complete degradation of acetylated polysaccharides, like pectins and xylans. The gene(Axe) encoding acetyl xylan estarase(AXE) was isolated from genomic ${\lambda}$ library from Aspergillus ficuum. Nucleotide sequencing of the Axe gene indicated that the gene was separated with two intervening sequences and the amino acid sequence comparison revealed that it was closely related to that from A. awamori with the 92 % indentity. Heterologous expression of AXE was conducted by using YEp352 and Saccharomyces cerevisae 2805 as a vector and host expression system, respectively. The Axe gene was placed between GAL1 promoter and GAL7 terminator and then this recombinant vector was used to transform S. cerevisiae 2805 strain. Culture filtrate of the transformed yeast was assayed for the presence of AXE activity by spectrophotometry and, comparing with the host strain, four to five times of enzyme activity was detected in culture filtrate of transformed yeast.

  • PDF

Protection of the brain through supplementation with larch arabinogalactan in a rat model of vascular dementia

  • Lim, Sun Ha;Lee, Jongwon
    • Nutrition Research and Practice
    • /
    • v.11 no.5
    • /
    • pp.381-387
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Vascular dementia (VaD) caused by reduced blood supply to the brain manifests as white matter lesions accompanying demyelination and glial activation. We previously showed that arabinoxylan consisting of arabinose and xylose, and arabinose itself attenuated white matter injury in a rat model of VaD. Here, we investigated whether larch arabinogalactan (LAG) consisting of arabinose and galactose could also reduce white matter injury. MATERIALS/METHODS: We used a rat model of bilateral common carotid artery occlusion (BCCAO), in which the bilateral common carotid arteries were exposed and ligated permanently with silk sutures. The rats were fed a modified AIN-93G diet supplemented with LAG (100 mg/kg/day) for 5 days before and 4 weeks after being subjected to BCCAO. Four weeks after BCCAO, the pupillary light reflex (PLR) was measured to assess functional consequences of injury in the corpus callosum (cc). Additionally, Luxol fast blue staining and immunohistochemical staining were conducted to assess white matter injury, and astrocytic and microglial activation, respectively. RESULTS: We showed that white matter injury in the the cc and optic tract (opt) was attenuated in rats fed diet supplemented with LAG. Functional consequences of injury reduction in the opt manifested as improved PLR. Overall, these findings indicate that LAG intake protects against white matter injury through inhibition of glial activation. CONCLUSIONS: The results of this study support our hypothesis that cell wall polysaccharides consisting of arabinose are effective at protecting white matter injury, regardless of their origin. Moreover, LAG has the potential for development as a functional food to prevent vascular dementia.

Exopolysaccharide-Overproducing Lactobacillus paracasei KB28 Induces Cytokines in Mouse Peritoneal Macrophages via Modulation of NF-${\kappa}B$ and MAPKs

  • Kang, Hee;Choi, Hye-Sun;Kim, Ji-Eun;Han, Nam-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.11
    • /
    • pp.1174-1178
    • /
    • 2011
  • Exopolysaccharides (EPSs) are microbial polysaccharides that are released outside of the bacterial cell wall. There have been few studies on EPS-producing lactic acid bacteria that can enhance macrophage activity and the underlying signaling mechanism for cytokine expression. In the current study, EPS-overproducing Lactobacillus (L.) paracasei KB28 was isolated from kimchi and cultivated in conditioned media containing glucose, sucrose, and lactose. The whole bacterial cells were obtained with their EPS being attached, and the cytokine-inducing activities of these cells were investigated. Gas chromatography analysis showed the presence of glucose, galactose, mannose, xylose, arabinose, and rhamnose in EPS composition. EPS-producing L. paracasei KB28 induced the expression of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, and IL-12 in mouse macrophages. This strain also caused the degradation of $I{\kappa}B{\alpha}$ and phosphorylation of the major MAPKs: Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK)1/2. The use of pharmacological inhibitors showed that different signaling pathways were involved in the induction of TNF-${\alpha}$, IL-6 and IL-12 by L. paracasei KB28. Our results provide information for a better understanding of the molecular mechanisms of the immunomodulatory effect of food-derived EPS-producing lactic acid bacteria.

Physicochemical Properties and Intestinal Bacterial Growth-Promoting Effect of Cell-Wall Polysaccharides from Cucumber Peel

  • Jun, Hyun-Il;Song, Geun-Seoup;Lee, Young-Tack;Kim, Young-Soo
    • Food Science and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.375-379
    • /
    • 2005
  • Physicochemical properties, intestinal microbial growth, and inhibitory effects of alcohol-insoluble polysaccharide (AIP) extracted from cucumber peel were investigated. AIP was composed of 14.54% crude protein, 1.04% crude lipid, 13.74 % crude ash, 9.1% soluble dietary fiber, and 41.2% insoluble dietary fiber. AIP showed low bulk density (0.18 g/mL) and water-holding capacity (6.39 g/g), and high oil-holding capacity (3.96 g/g). Pectic substance fractions [water-soluble pectic substance (WSP), ethylenediaminetetraacetic acid-soluble pectic substance (ESP), and alkali-soluble pectic substances (ASP)] and hemicellulose fractions [1 M KOH-soluble hemicellulose (KHP1) and 4 M KOH-soluble hemicellulose (KHP4)] were obtained from sequential chemical fractionation of AIP. WSP showed higher total sugar contents than total uronic acid contents, whereas opposite results were observed in ESP and ASP. Molecular weight distributions of three pectic substance fractions were in order of ASP>ESP>WSP. Ion exchange chromatogram pattern of WSP was different from those of ESP and ASP. Major component of WSP was fraction eluted by 0.05 M ammonium acetate buffer, whereas that of ESP and ASP was fraction eluted by 0.2 M NaOH. WSP and ASP showed growth-promoting activities against Lactobacillus brevis, Bifidobacterium bifidum, and B. longum, whereas B. bifidum and B. longum for ESP. KHP1 and KHP4 fractions had significant growth-promoting activities against B. bifidum.