• Title/Summary/Keyword: cell wall materials

Search Result 187, Processing Time 0.026 seconds

A review on the softening of the fermented vegetables and the fruits (침채류와 과실의 연화현상에 관한 고찰)

  • 이희섭
    • Journal of the Korean Home Economics Association
    • /
    • v.34 no.4
    • /
    • pp.403-414
    • /
    • 1996
  • The softening of the femented vegetables and the fruits was resulted from the degradation of pectin substances, cellulose, hemicellulose by polygalacturonase(PG), pectinesterase(PE), Cx-cellulase, $\beta$-galctosidase. The conversion of insoluble pectin to soluble pectin in cell wall-middle lamella was a major factor in the changes of firmness. Ca2+ was substantially increased firmness. However, Ca2+ could be removed from cell wall by chelating agents such as oxalic acid and citric acid. And Ca2+ was replaced with Na+ by ion exchange reaction. Ca2+ deficient tissue was vulnerable to attack by PG. Preheating treatment and Ca2+ addition is most effective in inhibiting the vegetable food softening and in increasing middle lamella-cell wall regidity, which PE activation by preheating treatment and Ca2+ addition could created more anionic carboxyl groups for cationic materials binding such as Ca2+ and chitosan and for polypectategel formation. Excessive demethylation by PE was associated with loosening of middle lamella cell wall components and softening.

  • PDF

Preparation and Analysis of Yeast Cell Wall Mannoproteins, Immune Enhancing Materials, from Cell Wall Mutant Saccharomyces cerevisiae

  • Ha Chang-Hoon;Yun Cheol-Won;Paik Hyun-Dong;Kim Seung-Wook;Kang Chang-Won;Hwang Han-Joon;Chang Hyo-Ihl
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.247-255
    • /
    • 2006
  • Yeast cell wall matrix particles are composed entirely of mannoprotein and ${\beta}-glucan$. The mannoproteins of yeast cell wall can systemically enhance the immune system. We previously purified and analyzed alkali-soluble ${\beta}-glucans$ [${\beta}$-(1,3)- and ${\beta}$-(1,6)-glucans] [10]. In the present study, a wild-type strain was first mutagenized with ultraviolet light, and the cell wall mutants were then selected by treatment with 1.0 mg/ml laminarinase (endo-${\beta}$-(1,3)-D-glucanase). Mannoproteins of Saccharomyces cerevisiae were released by laminarinase, purified by concanavalin-A affinity and ion-exchange chromatography. The results indicated that the mutants yielded 3-fold more mannoprotein than the wild-type. The mannoprotein mass of mutant K48L3 was 2.25 mg/100 mg of yeast cell dry mass. Carbohydrate analysis revealed that they contained mannose, glucose, and N-acetylglucosamine. Saccharomyces cerevisiae cell wall components, mannoproteins, are known to interact with macrophages through receptors, thereby inducing release of tumor necrosis factor alpha ($TNF-{\alpha}$) and nitric oxide. Mannoprotein tractions in the present study had a higher macrophage activity of secretion of $TNF-{\alpha}$ and nitric oxide and direct phagocytosis than positive control ($1{\mu}g$ of lipopolysaccharide). In particular, F1 and F3 fractions in mannoproteins of K48L3 enhanced and upregulated the activity of nitric oxide secretion and macrophage phagocytosis by approximately two- and four-fold, respectively.

Elastic Analysis of Honeycomb Materials Considering Cell Size and Cell Wall Thickness (셀 크기와 셀벽 두께를 고려한 하니컴 재료의 탄성 해석)

  • 김형구;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.157-160
    • /
    • 2003
  • Honeycomb sandwich composite structures have been widely used in aircraft and military industry because of light weight and high stiffness. Accurate mechanical properties of honeycomb materials are needed for analysis of sandwich composites. In this study, theoretical formula for elastic modulus of honeycomb materials was established considering bending and axial deformations of their walls. Finite-element analysis results were compared with theoretical ones of the longitudinal and transverse moduli of honeycomb materials. Consequently, the mechanical properties of honeycomb materials could be analytically predicted.

  • PDF

Subcellular Responses in Nonhost Plant Infected with Pathogenic and Non-pathogenic Strains of Xanthomonas axonopodis pv. glycines

  • Jeong, Yong-Ho;Kim, Jung-Gun;Chang, Sung-Pae;Hwang, In-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.18 no.3
    • /
    • pp.115-120
    • /
    • 2002
  • Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean, induces hypersensitive response (HR) in a non-host plant, hot pepper (Capsicum annuum). A wild-type strain (8ra) and its non-patho-genic mutant (8-13) of X. axonopodis pv. glycines were inoculated into the pepper leaf tissues and their subcellular responses to the bacterial infections were examined by electron microscopy. Intrastructural changes related to HR were found in the leaf tissues infected with 8ra from 8 h after inoculation, characterized by separation of plasmalemma from the cell wall, formation of small vacuoles and vesicles, formation of cell wall apposition, and cellular necrosis. No such responses were observed in the tissues infected with the mutant. In 8ra, the bacterial cells were attached to the cell walls, with the cell wall material dissolved into and appearing to encapsulate the bacterial cells. The bacterial cells later became entirely embedded in the cell wall material. On the other hand, in 8-13, the bacterial cells were usually not attached tightly to the plant cell wall, and no or poor encapsulation of the bacteria by the wall material occurred, although these were encircled by rather loose wall materials at the later stages.

Immunochemical Localization of Tetrahydrocannabinol (THC) in Chemically Fixed Glandular Thrichomes of Cannabis (Cannabaceae)

  • Eun Soo Kim;Paul G. Mahlberg
    • Animal cells and systems
    • /
    • v.3 no.2
    • /
    • pp.215-219
    • /
    • 1999
  • Monoclonal antibody for delta-9-tetrahydrocannabiol (THC Ab), conjugated with protein A-gold, was employed as a probe to detect THC localization in the gland and subjacent cells of chemically fixed bracts of Cannabis. THC was detected in the outer wall of the disc cells, fibrillar matrix, the surface feature of secretory vesicles, and sheath throughout development of the secretory cavity. The probe was absent from vesicles. Label was also present in anticlinal walls of disc cells and walls of dermal and mesophyll cells. Little or no THC Ab was present in disc cells and none were detected in control tissues. This distribution pattern of THC Ab was similar to that in tissues prepared by high pressure cryofixation-cryosubstitution. Consistent association of THC with wall and wall-derived materials suggests that cannnabinoids are synthesized outside the plasma membrane and bound to a wall component, where-upon they are transported to the cavity with wall materials released from the disc cell wall during development of the secretory cavity.

  • PDF

Effect of AL072, a Novel Anti-Legionella Antibiotic, on Growth and Cell Morphology of Legionella pneumophila

  • Kang, Byeong-Cheol;Park, Jae-Hak;Lee, Yong-Soon;Suh, Jung-Woo;Chang, Jun-Hwan;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.371-375
    • /
    • 1999
  • AL072 is a potent anti-Legionella antibiotic produced by Streptomyces strain AL91. The minimum inhibitory concentration (MIC) of AL072 against Legionella pneumophila was 0.2$\mu$g/ml. Bacterial growth was rapidly inhibited at the dose range between the MIC and 20 times of the MIC when the antibiotic was added at the mid-exponential phase. Ultrastructural changes in L. pneumophila were observed upon treatment with AL072. Under electron microscopical observation, the organisms treated with AL072 exhibited characteristic morphological changes in the cellular outer coat. Also irregular morphological changes, such as the formation of filamentous materials in the cytoplasm, an increase in the size and number of cytoplasmic vacuoles, the extruding of cytoplasmic contents, the formation of spheroplast and ghost cells, and blebbings in the cell wall were observed. Furthermore, immunoelectron microscopical observation of the group treated with the MIC showed that the immune complex attached mainly to the cell wall. The results of these experiments indicate that AL072, like the inhibitors of cell wall synthesis, act selectively on the cell wall of L. pneumophila.

  • PDF

Lipid and Lipase Distribution on Endosperm Cell of Panax ginseng Seed for the Electron Microscope (전자현미경을 이용한 인삼종자 배유세포내의 지질 및 지질가수분해 효소의 분포)

  • 유성철;노미전
    • Journal of Ginseng Research
    • /
    • v.16 no.2
    • /
    • pp.129-137
    • /
    • 1992
  • This study was carried out to investigate the localization of lipids and lipase activity with lipid staining and cytochemical technique in endosperm cells of Panax ginseng C.A. Meyer seed. In endosperm cells of indehiscent seed, protein bodies facing the umbiliform layer are different in electron density during the various degraded processes. Gradually, protein matrix near the cell wall was lysed and electron lucent inclusions appeared on umbiliform layer. The protein body with high electron density and the spherosome with low electron density were observed in endosperm cells. As a result of lipid staining, electron density of spherosome is more intense than those of the protein matrix within the protein body in endosperm cells of indehiscent seed. Free spherical spherosomes within the umbiliform layer have a high electron density. The spherical spherosomes were more electron densed and were uniform in comparison with the cytoplasmic proteinaceous granules in endosperm cells of seed with red seed coat. The major component of spherosome was determined to be lipid. Lipase activity occurs in the spherosome and near the endosperm cell wall facing the umbiliform layer. Cytochemical reaction products of lipase were observed in the spherosome membrane and in the inner regions of spherosome. After protein bodies were digested, lipase activities were observed in free spherosomes and near the cell wall of endosperm cells. Umbiliform layer composing of fibrillized wall and digested materials of the endosperm cell showed a little lipase reaction products.

  • PDF

Changes on the Cell Wall Components of Jujube Fruits during Drying (대추 천일건조 중 세포벽 구성성분의 변화)

  • 손미애;김미현;신승렬;송준희;김광수
    • Food Science and Preservation
    • /
    • v.5 no.4
    • /
    • pp.350-354
    • /
    • 1998
  • This paper was investigated to changes of cell components during drying for studies on the softening of jujube fruits. The contents of alcohol-insoluble material, cell wall and water-soluble material were not changed at 6 days of drying, but alcohol-insoluble materials and cell wall were decreased at 9 days of drying, however water-soluble materials were increased. Pectin and hemicellulose were not changed at 6 days of drying. Pectin and alkali-soluble hemicellulose were remarkable decreased at 9 days of drying, but acid-soluble hemicellulose was increased. Water-soluble pectin was not changed at 6 days of drying, but increased at 9 days of drying. EDTA-soluble and insoluble pectin were decreased after 6 days of drying. The non-cellulosic neutral sugars were not changed at 6 days of drying. The contents of arabinose, galactose and total neutral suger were decreased at 9 days of drying.

  • PDF

Effect of Commercial Plant Cell Wall Degrading Enzymes on Extraction of p-Hydroxybenzoic Acid from Carrot Alcohol Insoluble Residue (AIR) and Cellulose Fraction (당근의 알콜불용성 잔사와 셀룰로오스 분획의, p-Hydroxybenzoic Acid 추출에 미치는 시판 식물세포벽분해효소의 영향)

  • Kang, Yoon-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.10
    • /
    • pp.1633-1637
    • /
    • 2005
  • Five different plant cell wall degrading enzymes were tested for their ability to release p -hydroxybenzoic acid from carrot alcohol insoluble residue (AIR) and cellulose fraction. Phenolics of AIR from cell wall materi민 (CWM) in carrot were found to consist primarily of p-hydroxybenzoic acid (1,977 $\mu$g/g AIR) with minor contribution from vanillin (55.9 $\mu$g/g AIR), ferulic acid (13.6 $\mu$g/g AIR) and p-hydroxybenzaldehyde (10.6 $\mu$g/g AIR). The contents of ferulic acid in Driselase, Cellulase, Macerozyme R-200, Macerozyme R-10 and Sumyzyme MC were 2,319, 2,060, 391, 95.2, 34.1 $\mu$g/g, respectively. Incubation of Driselase with AIR released only 2.8$\%$ of the total 4 M NaOH extractable p-hydroxybenzoic acid. These results indicate that commercial five plant cell wall dograding enzymes can not release P-hydroxybenzoic acid from carrot AIR and cellulose fraction.

Respection of Pectic Enzymes Among the Hydrolysis Enzymes of Plant Cell Wall (식물세포벽 가수분해효소 중 펙틴계효소에 대한 고찰)

  • 최동원;김인규
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.1
    • /
    • pp.92-98
    • /
    • 1996
  • Pectic materials, which are widely spread in the plant cell wall as plant carbohydrates, plays a great role in food Industry that acts as a softening agent of fruits and vegetables, and gel forming agents. To study physiochemical properties and industrial applications of pectic enzymes that hydrolyzes pectin, classification, assay method and Industrial application are reviewed based on previous results.

  • PDF