• 제목/요약/키워드: cell surface markers

검색결과 106건 처리시간 0.034초

급성 전골수성 백혈병 세포주간의 삼산화비소에 대한 반응 (Different Responses to Arsenic Trioxide between NB4 and UF-1, Acute Promyelocytic Leukemia Cell Lines)

  • 김혜란;최윤정;유성열;이영석;이상화
    • 생명과학회지
    • /
    • 제16권5호
    • /
    • pp.759-766
    • /
    • 2006
  • 급성 전골수성 백혈병은 염색체 전위의 결과로 생긴 PML/RAR$({\alpha})$ 융합 단백의 과발현으로 영향을 받은 전골 수세포의 분화 정지로 발생하는 골수성 백혈병의 일종이다. 삼산화 비소는 세포고사를 유발하여 급성전골수성 백혈병의 관해를 유도한다는 것이 밝혀졌으나 이 약제에 대한 감수성이 다양하여 고형암에 적용하기에는 제한점이 있다. All-trans-retinoic acid (ATRA)에 감수성인 NB4 세포주와 내성인 UF-1 세포주 모두에 삼산화 비소가 세포고사를 유도하였다. 백혈병 세포주를 삼산화 비소로 처리하여, 세포내 GSH 농도가 낮아지고 세포고사의 감수성이 높아지는 상관관계를 찾았으며 전골수성 암세포를 수지상 세포 표면 표식자를 가진 세포로 분화시켰다. ATRA에 대한 감수성인 세포주와 내성인 세포주의 삼산화 비소에 대한 반응의 차이를 이해하고, 전골수 세포가 수지상 세포로 분화하는 과정을 규명한다면, 삼산화 비소에 의한 전골수성 백혈병의 완전관해의 기전을 밝힐 수 있고 또한 임상적용을 확대할 수 있을 것이다.

신경아교세포와 조현병 (Neuroglial Cells and Schizophrenia)

  • 원승희
    • 생물정신의학
    • /
    • 제22권2호
    • /
    • pp.47-54
    • /
    • 2015
  • In the past decade, structural, molecular, and functional changes in glial cells have become a major focus in the search for the neurobiological foundations of schizophrenia. Glial cells, consisting of oligodendrocytes, astrocytes, microglia, and nerve/glial antigen 2-positive cells, constitute a major cell population in the central nervous system. There is accumulating evidence of reduced numbers of oligodendrocytes and altered expression of myelin/oligodendrocyte-related genes that might explain the white matter abnormalities and altered inter- and intra-hemispheric connectivities that are characteristic signs of schizophrenia. Astrocytes play a key role in the synaptic metabolism of neurotransmitters ; thus, astrocyte dysfunction may contribute to certain aspects of altered neurotransmission in schizophrenia. Increased densities of microglial cells and aberrant expression of microglia-related surface markers in schizophrenia suggest that immunological/inflammatory factors are of considerable relevance to the pathophysiology of psychosis. This review describes current evidence for the multifaceted role of glial cells in schizophrenia and discusses efforts to develop glia-directed therapies for the treatment of the disease.

Optimization of Shoot Induction, Histological Study and Genetic Stability of in vitro Cultured Pisum sativum cv. 'Sparkle'

  • Kantayos, Vipada;Bae, Chang-Hyu
    • 한국자원식물학회지
    • /
    • 제32권1호
    • /
    • pp.19-28
    • /
    • 2019
  • An efficient shoot regeneration condition for pea cv. 'Sparkle' was developed by using optimum explant, plant growth regulator concentrations, and pretreatment of BA onto explant. The average shoot number per explant showed the highest on two kinds of shoot induction media (MSB5 media containing 2 mg/L BA and a combination of 2 mg/L BA and 1 mg/L TDZ) when cotyledonary node explants were cultured. Moreover, the pretreatment of explant in 200 mg/L BA solution was found to be more effective in shoot induction than that of non-pretreatment. By histological study, cell division and proto-meristem were formed near the surface of the sub-epidermal and epidermal cell layers of cotyledonary node in earlier than 3 days after culture. The analysis of genetic stability of regenerants by using thirteen ISSR markers showed that in vitro regenerated plants showed polymorphism with 8.3% compared with their mother plants.

유방암 줄기세포 개념 및 제한점 (Concept and limitation of breast cancer stem cells)

  • 김종빈;안정신;임우성;문병인
    • Journal of Medicine and Life Science
    • /
    • 제15권2호
    • /
    • pp.46-50
    • /
    • 2018
  • Cancer, a leading mortality disease following cardiovascular disease worldwide, has high incidence as one out of every four adults in Korea. It was known to be caused by several reasons including somatic mutation, activation of oncogene and chromosome aneuploidy. Cancer cells show a faster growth rate and have metastatic and heterogeneous cell populations compared to normal cells. Cancer stem cells, the most invested field in cancer biology, is a theory to explain heterogeneous cell populations of cancer cells among several characteristics of cancer cells, which is providing the theoretical background for incidence of cancer and treatment failure by drug resistance. Cancer stem cells initially explain heterogeneous cell populations of cancer cells based on the same markers of normal stem cells in cancer, in which only cancer stem cells showed heterogeneity of cancer cells and tumor initiating ability of leukemia. Based on these results, cancer stem cells were reported in various solid cancers such as breast cancer, liver cancer, and lung cancer. Breast cancer stem cells were first reported in solid cancer which had tumor initiating ability and further identified as anti-cancer drug resistance. There were several identification methods in breast cancer stem cells such as specific surface markers and culture methods. The discovery of cancer stem cells not only explains heterogeneity of cancer cells, but it also provides theoretical background for targeting cancer stem cells to complete elimination of cancer cells. Many institutes have been developing new anticancer drugs targeting cancer stem cells, but there have not been noticeable results yet. Many researchers also reported a necessity for improvement of current concepts and methods of research on cancer stem cells. Herein, we discuss the limitations and the perspectives of breast cancer stem cells based on the current concept and history.

Expression of cytokines and co-stimulatory molecules in the Toxoplasma gondii-infected dendritic cells of C57BL/6 and BALB/c mice

  • Jae-Hyung Lee;Jae-Min Yuk;Guang-Ho Cha;Young-Ha Lee
    • Parasites, Hosts and Diseases
    • /
    • 제61권2호
    • /
    • pp.138-146
    • /
    • 2023
  • Toxoplasma gondii is an intracellular protozoan parasite which can infect most warm-blooded animals and humans. Among the different mouse models, C57BL/6 mice are more susceptible to T. gondii infection compared to BALB/c mice, and this increased susceptibility has been attributed to various factors, including T-cell responses. Dendritic cells (DCs) are the most prominent type of antigen-presenting cells and regulate the host immune response, including the response of T-cells. However, differences in the DC responses of these mouse strains to T. gondii infection have yet to be characterized. In this study, we cultured bone marrow-derived DCs (BMDCs) from BALB/c and C57BL/6 mice. These cells were infected with T. gondii. The activation of the BMDCs was assessed based on the expression of cell surface markers and cytokines. In the BMDCs of both mouse strains, we detected significant increases in the expression of cell surface T-cell co-stimulatory molecules (major histocompatibility complex (MHC) II, CD40, CD80, and CD86) and cytokines (tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-12p40, IL-1β, and IL-10) from 3 h post-T. gondii infection. The expression of MHC II, CD40, CD80, CD86, IFN-γ, IL-12p40, and IL-1β was significantly higher in the T. gondii-infected BMDCs obtained from the C57BL/6 mice than in those from the BALB/c mice. These findings indicate that differences in the activation status of the BMDCs in the BALB/c and C57BL/6 mice may account for their differential susceptibility to T. gondii.

Hypoxia-dependent mitochondrial fission regulates endothelial progenitor cell migration, invasion, and tube formation

  • Kim, Da Yeon;Jung, Seok Yun;Kim, Yeon Ju;Kang, Songhwa;Park, Ji Hye;Ji, Seung Taek;Jang, Woong Bi;Lamichane, Shreekrishna;Lamichane, Babita Dahal;Chae, Young Chan;Lee, Dongjun;Chung, Joo Seop;Kwon, Sang-Mo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권2호
    • /
    • pp.203-213
    • /
    • 2018
  • Tumor undergo uncontrolled, excessive proliferation leads to hypoxic microenvironment. To fulfill their demand for nutrient, and oxygen, tumor angiogenesis is required. Endothelial progenitor cells (EPCs) have been known to the main source of angiogenesis because of their potential to differentiation into endothelial cells. Therefore, understanding the mechanism of EPC-mediated angiogenesis in hypoxia is critical for development of cancer therapy. Recently, mitochondrial dynamics has emerged as a critical mechanism for cellular function and differentiation under hypoxic conditions. However, the role of mitochondrial dynamics in hypoxia-induced angiogenesis remains to be elucidated. In this study, we demonstrated that hypoxia-induced mitochondrial fission accelerates EPCs bioactivities. We first investigated the effect of hypoxia on EPC-mediated angiogenesis. Cell migration, invasion, and tube formation was significantly increased under hypoxic conditions; expression of EPC surface markers was unchanged. And mitochondrial fission was induced by hypoxia time-dependent manner. We found that hypoxia-induced mitochondrial fission was triggered by dynamin-related protein Drp1, specifically, phosphorylated DRP1 at Ser637, a suppression marker for mitochondrial fission, was impaired in hypoxia time-dependent manner. To confirm the role of DRP1 in EPC-mediated angiogenesis, we analyzed cell bioactivities using Mdivi-1, a selective DRP1 inhibitor, and DRP1 siRNA. DRP1 silencing or Mdivi-1 treatment dramatically reduced cell migration, invasion, and tube formation in EPCs, but the expression of EPC surface markers was unchanged. In conclusion, we uncovered a novel role of mitochondrial fission in hypoxia-induced angiogenesis. Therefore, we suggest that specific modulation of DRP1-mediated mitochondrial dynamics may be a potential therapeutic strategy in EPC-mediated tumor angiogenesis.

우유의 체세포내 면역 표지자 분석을 통한 소 유방염 진단 (Leukocyte Markers Differentiate Non-Infected from Spontaneously Infected Dairy Cows)

  • 유도현;이종현;송루희;노동호;이영화;이미진;박진호
    • 한국임상수의학회지
    • /
    • 제26권6호
    • /
    • pp.524-527
    • /
    • 2009
  • 본 연구는 소의 유선 내 감염(유방염)과 체세포 면역 표지자의 상관 관계 분석을 위하여 자연적으로 감염된 젖소와 건강한 젖소의 우유를 비교한 단면조사 연구이다. 유방염에 이환된 31마리의 국내 젖소의 우유에서 세 가지의 체세포 면역 표지자(CD11b, CD4, CD8)의 발현과 체세포 수(SCC), 그리고 세균학적인 분석(배양 및 PCR검사)을 통한 감염 여부 및 병원체의 종류에 대하여 분석하였다. 그 결과 감염된 젖소의 우유는 건강한 젖소의 우유보다 체세포 내의 CD11b와 CD4발현이 유의적으로 증가하였으며, CD4/CD8비율도 높았다. 그러나, 병원체의 종류에 따른 증가된 체세포 면역 표지자와는 커다란 연관성을 보이지 않았으나, 감염된 병원체의 수와 관련해서는, 체세포 면역 표지 인자 CD11b, CD4의 발현 그리고 CD4/8 비율의 증가와 현저한 관련이 있었다. 이러한 연구 결과로 볼 때, 면역 표지자를 이용한 우유의 체세포 분석을 통하여 특발성 소 유방염의 진단 및 관리에 유용하게 활용될 수 있을 것이다.

인간 지방조직에서 분리된 줄기세포의 표면항원 및 다분화능 확인 (Isolation and Characterization of Cells from Human Adipose Tissue Developing into Osteoblast and Adipocyte)

  • 조혜경
    • 대한임상검사과학회지
    • /
    • 제40권2호
    • /
    • pp.106-112
    • /
    • 2008
  • Bone marrow derived mesenchymal stem cells (BMSCs) are largely studied for their potential clinical use. But it is hard to get enough number of those cells for clinical trials and give serious pain to the patients. Adipose tissue is derived from the embryonic mesenchyme and contains a stroma that is easily isolated with large amount. This cell population (adipose derived stem cells: ADSCs) can be isolated from human lipoaspirates and like MSCs, differentiate toward the osteogenic, adipogenic, myogenic and chondrogenic lineages. To confirm whether adipose tissue contains stem cells, the ADSCs extracted from omental or subcutaneous fat tissue were expanded during third to fifth passages. The phenotype of the ADSCs was identified by the conventional cell surface markers using flow cytometry: positive for CD29 and CD44, but negative for CD34, CD45, CD117 and HLA-DR that similar to those observed on BMSCs. The ADSCs were able to differentiate into the osteoblast or adipocytes with induction media. Finally, ADACs expressed multiple CD marker antigens similar to those observed on BMSCs and differentiated into osteoblast, adipocyte. With this, human adipotissue contains multipotent cells and may represent an alternative stem cell source to bone marrow-derived MSCs.

  • PDF

Cellular Protrusions - Lamellipodia, Filopodia, Invadopodia and Podosomes - and their Roles in Progression of Orofacial Tumours: Current Understanding

  • Alblazi, Kamila Mohamed Om;Siar, Chong Huat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권6호
    • /
    • pp.2187-2191
    • /
    • 2015
  • Background: Protrusive structures formed by migrating and invading cells are termed lamellipodia, filopodia, invadopodia and podosomes. Lamellipodia and filopodia appear on the leading edges of migrating cells and function to command the direction of the migrating cells. Invadopodia and podosomes are special F-actin-rich matrix-degrading structures that arise on the ventral surface of the cell membrane. Invadopodia are found in a variety of carcinomatous cells including squamous cell carcinoma of head and neck region whereas podosomes are found in normal highly motile cells of mesenchymal and myelomonocytic lineage. Invadopodia-associated protein markers consisted of 129 proteins belonging to different functional classes including WASP, NWASP, cortactin, Src kinase, Arp 2/3 complex, MT1-MMP and F-actin. To date, our current understanding on the role(s) of these regulators of actin dynamics in tumors of the orofacial region indicates that upregulation of these proteins promotes invasion and metastasis in oral squamous cell carcinoma, is associated with poor/worst prognostic outcome in laryngeal cancers, contributes to the persistent growth and metastasis characteristics of salivary gland adenoid cystic carcinoma, is a significant predictor of increased cancer risk in oral mucosal premalignant lesions and enhances local invasiveness in jawbone ameloblastomas.

Monoclonal antibody K312-based depletion of pluripotent cells from differentiated stem cell progeny prevents teratoma formation

  • Park, Jongjin;Lee, Dong Gwang;Lee, Na Geum;Kwon, Min-Gi;Son, Yeon Sung;Son, Mi-Young;Bae, Kwang-Hee;Lee, Jangwook;Park, Jong-Gil;Lee, Nam-Kyung;Min, Jeong-Ki
    • BMB Reports
    • /
    • 제55권3호
    • /
    • pp.142-147
    • /
    • 2022
  • Human pluripotent stem cells (PSCs) have been utilized as a promising source in regenerative medicine. However, the risk of teratoma formation that comes with residual undifferentiated PSCs in differentiated cell populations is most concerning in the clinical use of PSC derivatives. Here, we report that a monoclonal antibody (mAb) targeting PSCs could distinguish undifferentiated PSCs, with potential teratoma-forming activity, from differentiated PSC progeny. A panel of hybridomas generated from mouse immunization with H9 human embryonic stem cells (hESCs) was screened for ESC-specific binding using flow cytometry. A novel mAb, K312, was selected considering its high stem cell-binding activity, and this mAb could bind to several human induced pluripotent stem cells and PSC lines. Cell-binding activity of K312 was markedly decreased as hESCs were differentiated into embryoid bodies or by retinoic acid treatment. In addition, a cell population negatively isolated from undifferentiated or differentiated H9 hESCs via K312 targeting showed a significantly reduced expression of pluripotency markers, including Oct4 and Nanog. Furthermore, K312-based depletion of pluripotent cells from differentiated PSC progeny completely prevented teratoma formation. Therefore, our findings suggest that K312 is utilizable in improving stem cell transplantation safety by specifically distinguishing residual undifferentiated PSCs.