• 제목/요약/키워드: cell production

Search Result 8,058, Processing Time 0.035 seconds

Anti-Inflammatory Effects and Cytoprotective Effects of Smilacis Chinae Radix (토복령의 항염증 및 세포보호 효과에 미치는 영향)

  • Lee, Seon-Goo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • Smilacis Chinae Radix has been used as an anti-inflammatory agent. This study was performed to anti-inflammatory and MAP kinase signaling pathway in vitro. Experimental studies were obtained by measuring the Cytotoxicity, production of NO, PGE2, TNF-$\alpha$ and protein level of catalase, SOD, MAP kinase, The results were summarized as follows: Smilacis Chinae Radix was not cytotoxic effects against Raw264.7 and HEK293 cells. Concentration of $100{\mu}g/m{\ell}$ Smilacis Chinae Radix inhibited the production of NO in the Raw264.7 cell stimulated with LPS. All concentrations of Smilacis Chinae Radix not significantly inhibited the production of PGE2 in the Raw264.7 cell stimulated with LPS. All concentrations of Smilacis Chinae Radix did not inhibit the production of TNF-$\alpha$ in the Raw264.7 cell stimulated with LPS. Smilacis Chinae Radix has not effect of blocking NF-${\kappa}B$ into nucleus in LPS-induced macrophage Raw264.7 cell. Smilacis Chinae Radix has the effect of Cytoprotection through activation of ERK and inhibition of p38 and JNK. Accordingly the results show Smilacis Chinae Radix could induce anti-inflammation and Cytoprotection effects against In vitro, but it needs more research on the precise mechanism of such effects.

Improvement of Porcine Epidemic Diarrhea Disease Vaccine Productivity by Ammonium Ion Removal in a Carberry Type Bioreactor (Carberry Type 생물반응기에서 암모늄 이온 제거에 의한 돼지유행성설사병 바이러스 백신 생산성 증대)

  • Lee, Chang-Jin;Jeong, Yeon-Ho
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.588-593
    • /
    • 2011
  • The porcine epidemic diarrhea virus(PEDV) production yield in spinner flask cultures using Vero cells immobilized on microcarriers was improved by the selective adsorption of ammonium ions in a Carberry type bioreactor which was equipped with Phillipsite-Gismondine synthetic zeolite. Though the apparent cell growth seemed to be lower than that of control due to the aggregation of microcarriers between impeller shaft and the adsorbent, zeolite was found to not to be toxic to Vero cell, considering estimated glucose and lactate changes. Zeolite was observed to remove ammonium ions effectively in both steps of cell growth and virus production. In virus production, the virus titer with zeolite was two times higher than that without zeolite. Consequently, zeolite was found to be an ideal adsorbent for higher production of virus vaccine with the effective removal of ammonium ions.

Immunogenicity of Recombinant Human Erythropoietin: Clinical Cases, Causes and Assays

  • Heo, Tae-Hwe;Kim, Young-Kwon;Yang, Seung-Ju;Cho, Hyun-Jeong;Kim, Sung-Jo
    • Biomedical Science Letters
    • /
    • v.15 no.2
    • /
    • pp.161-166
    • /
    • 2009
  • Human erythropoietin(EPO) is a glycoprotein that enhances red blood cell production by stimulating proliferation and differentiation of erythroid progenitor cells in the bone marrow. Patients with chronic kidney disease(CKD) suffer from anemia caused by reduced production of EPO in the kidney. Recombinant human EPO protein has been used successfully for the treatment of anemia associated with CKD. Recently, attention has been paid to the development of side effect of EPO, pure red cell aplasia(PRCA), in some patients with CKD. PRCA is a rare disorder of erythropoiesis that leads to a severe anemia due to an almost complete cessation of red blood cell production. EPO-related PRCA is caused by the production of EPO-neutralizing antibodies(Abs) that eliminate the biological activity of EPO as well as endogenous EPO in patients undergoing therapy. Since 1988, almost 200 cases worldwide have been reported with Ab-positive PRCA after receiving EPO therapeutics. The underlying mechanisms of the breaking of immune tolerance to self-EPO have been investigated. Modification of formulation, organic compounds of container closures, and route of administration has been suggested for the possible mechanism of increased immunogenicity of EPO. A number of assays have been used to detect Abs specific to EPO. These assays are generally grouped into two major categories: binding Ab assays and neutralizing Ab assays(bioassays). There are several types of binding Ab assays, including radioimmunoprecipitation assay, enzyme-linked immunosorbent assay, and the BIAcore biosensor assay. In vitro cell-based bioassays have been utilized for the detection of neutralizing Abs. Finally, the recent experience with anti-EPO Abs may have considerable implications for the future development and approval of EPO preparations. Also, considering that millions of patients are being treated with EPO, clinicians need to be aware of signs and consequences of this rare but severe clinical case.

  • PDF

Opposite Roles of B7.1 and CD28 Costimulatory Molecules for Protective Immunity against HSV-2 Challenge in a gD DNA Vaccine Model

  • Weiner, David B.;Sin, Jeong-Im
    • IMMUNE NETWORK
    • /
    • v.5 no.2
    • /
    • pp.68-77
    • /
    • 2005
  • Background: Costimulation is a critical process in Ag-specific immune responses. Both B7.1 and CD28 molecules have been reported to stimulate T cell responses during antigen presentation. Therefore, we tested whether Ag-specific immune responses as well as protective immunity are influenced by coinjecting with B7.1 and CD28 cDNAs in a mouse HSV-2 challenge model system. Methods: ELISA was used to detect levels of antibodies, cytokines and chemokines while thymidine incorporation assay was used to evaluate T cell proliferation levels. Results: Ag-specific antibody responses were enhanced by CD28 coinjection but not by B7.1 coinjection. Furthermore, CD28 coinjection increased IgG1 production to a significant level, as compared to pgD+pcDNA3, suggesting that CD28 drives Th2 type responses. In contrast, B7.1 coinjection showed the opposite, suggesting a Th1 bias. B7.1 coinjection also enhanced Ag-specific Th cell proliferative responses as well as production of Th1 type cytokines and chemokines significantly higher than pgD+pcDNA3. However, CD28 coinjection decreased Ag-specific Th cell proliferative responses as well as production of Th1 types of cytokines and chemokine significantly lower than pgD+pcDNA3. Only MCP-1 production was enhanced by CD28. B7.1 coimmunized animals exhibited an enhanced survival rate as well as decreased herpetic lesion formation, as compared to pgD+pcDNA3. In contrast, CD28 vaccinated animals exhibited decreased survival from lethal challenge. Conclusion: This study shows that B7.1 enhances protective Th1 type cellular immunity against HSV-2 challenge while CD28 drives a more detrimental Th2 type immunity against HSV-2 challenge, supporting an opposite role of B7.1 and CD28 in Ag-specific immune responses to a Th1 vs Th2 type.

THE EFFECT OF NATURAL EXTRACTS ON CELL GROWTH AND CYTOKINE PRODUCTION (생약 추출물이 세포성장 및 cytokine 생산에 미치는 영향)

  • Ryu, In-Cheol;Son, Seong-Heui;Chung, Chong-Pyoung;Bae, Ki-Hwan
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.1
    • /
    • pp.37-47
    • /
    • 1993
  • The native connective tissue attachment of the periodontium is known to be a complex consisting of gingival fibroblasts, periodontal ligament cells, gingival epithelial cells, cementum, alveolar bone and extensive extracellular matrix (collagen, glycoprotein and proteoglycans). The purpose of this study was to evaluate the effects of natural extracts on DNA, collagen and protein synthesis and inhibition of cytokine production in the gingival and periodontal ligament fibroblasts and gingival epithelial cells. Healthy gingival tissue was obtained from orthodontic treatment patients, and gingival epithelial cells, gingival fibroblasts and periodontal ligament cells were isolated and cultured from the samples. After treated with Ginseng protein, Pluronic F-68, Scutellariae Radix, centella asiatica, PDGF, IGF, DNA synthesis, total protein and collagen synthesis, and cytokine production of gingival epithelial cell, gingival fibroblast and periodontal ligamentcells were measured. MTT method for DNA synthesis, Peterkofsky and Dingerman method for total protein and collagen synthesis, and IL-1 ELISA kit for cytokine production were used. The proliferation of epithelial cells was enhanced in Centella asiatica, Ginseng protein, Pluronic F-68 and Scutellariae Radix. The activities of PDL cells were increased in PDGF, IGF, and Pluronic F-68. Higher collagen synthesis was observed in Scutellariae Radix and total protein synthesis was increased in Scutellariae Radix and PDGF. The inhibitory effects on IL-1, IL-6, $TNF-{\alpha}$ were observed in all exrracts.

  • PDF

Feasibility Study on Long-Term Continuous Ethanol Production from Cassava Supernatant by Immobilized Yeast Cells in Packed Bed Reactor

  • Liu, Qingguo;Zhao, Nan;Zou, Yanan;Ying, Hanjie;Liu, Dong;Chen, Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1227-1234
    • /
    • 2020
  • In this study, yeast cell immobilization was carried out in a packed bed reactor (PBR) to investigate the effects of the volumetric capacity of carriers as well as the different fermentation modes on fuel ethanol production. An optimal volumetric capacity of 10 g/l was found to obtain a high cell concentration. The productivity of immobilized cell fermentation was 16% higher than that of suspended-cell fermentation in batch and it reached a higher value of 4.28 g/l/h in repeated batches. Additionally, using this method, the ethanol yield (95.88%) was found to be higher than that of other tested methods due to low concentrations of residual sugars and free cells. Continuous ethanol production using four bioreactors showed a higher productivity (9.57 g/l/h) and yield (96.96%) with an ethanol concentration of 104.65 g/l obtained from 219.42 g/l of initial total sugar at a dilution rate of 0.092 h-1. Furthermore, we reversed the substrate-feed flow directions in the in-series bioreactors to keep the cells at their highest activity and to extend the length of continuous fermentation. Our study demonstrates an effective method of ethanol production with a new immobilized approach, and that by switching the flow directions, traditional continuous fermentation can be greatly improved, which could have practical and broad implications in industrial applications.

Precursors for the Ethylene Evolution of Pseudornonas syringae pv. Phaseolicola (Pseudomonas syringae pv. Phaseolicola에 의한 Ethylene 생성에서의 전구물질)

  • Bae, Moo;Kweon, Hea-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.14-20
    • /
    • 1991
  • - The purpose of this work is to investigate the effects of various substrates on biosynthesis of ethylene by the Kudzu strain of Pseudomonas syn'ngae pv. Phaseolicola causing halo blight. In the intact cell of P. sym'ngue, optimal condition for ethylene production was achieved at p1-I 7.5 and $30^{\circ}C$ for 9 to 10 hours of culture. Ethylene was most effectively produced from amino acids such as Asn, Gln, Asp ans Glu, compared to those of various kinds of sugars. While ethylene production from $\alpha$-ketoglutarate ($\alpha$-KG) was gradually increased throughout 51 hours incubation period tested. Ethylene production derived from citrate, $\alpha$-KG and oxalacetate as well as a few amino acids was further enhanced by the addition of histidine or arginine. In cell-free ethylene-forming system, ethylene was most effectively produced from $\alpha$-KG, compared to those from citrate, oxalacetate, Glu, Arg, or Asp, at 0.5 mM among the range from 0.25 mM to 5 mM. Anlinooxyacetate, an inhibitor of a pyridoxal phosphate-linked enzyme, completely inhibited ethylene evolution derived from Glu but not affect that derived from $\alpha$-KG. The results obtained in this work suggest that $\alpha$-KG might be a direct precursor of ethylene production in this organism than any other substrates tested.

  • PDF

Isolation and Characterization of Indigenous Diatom, Odontella sp. BS-003 as Potential Fucoxanthin and Omega-3 Fatty Acid Producer (잠재적 푸코잔틴 및 오메가-3 지방산 생산자로서 토착 규조류 오돈텔라의 분리 및 배양 특성)

  • Heo, Jina;Cho, Dae-Hyun;Kim, Urim;Kim, Hee-Sik
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.26-33
    • /
    • 2018
  • Fucoxanthin has been reported as bioactive compounds exhibiting strong antioxidant, anticancer and anti-inflammatory activities. Owing to its a wide range of applications and potentials, commercial production of fucoxanthin from algae has been attracted many attentions. Although, most of seaweeds and diatoms contain fucoxanthin as major carotenoid contents, low productivity of fucoxanthin still hinder the industrial application. Here, we newly isolated and identified indigenous marine diatom Odontella sp. BS-003 as a resource of fucoxanthin production. The characterization, optimization and production of the fucoxanthin, along with other bioactive compound omega-3 fatty acid from odontella sp. BS-003 were analyzed in this study, and the results represented optimal culture condition (two-fold silicate containing F/2 medium) significantly enhanced the algal biomass productivity. The maximum biomass (1.83 g/L), fucoxanthin (3.88 mg/g), along with omega-3 fatty acid (10 %, w/w) were obtained from the 10 L of photobioreactor. Based on the results, it is speculated that the microalga Odontella sp. BS-003 can be a promising natural resource for the production of bioactive compounds.

담배세초현탁배양을 이용한 human granulocyte-macrophage colony stimulating factor의 생산에서 배지 성분이 미치는 영향

  • Lee, Gi-Yong;Lee, Sang-Yun;Myeong, Hyeon-Jong;No, Yun-Suk;Kim, Dong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.325-328
    • /
    • 2002
  • Production of human granulocyte-macrophage colony stimulating factor (hGM-CSF) by Nicotiana tabacum cell suspension culture was studied in Murashige and Skoog (MS) medium with sucrose as a carbon source, ammonium nitrate and potassium nitrate as nitrogen sources, potassium dihydrogen phosphate and sodium dihydrogen phosphate hydrate as phosphate sources, respectively. Optimum concentrations for carbon, nitrogen, phosphate was determined to enhance the production of hGM-CSF. Cell growth was better at high initial sucrose concentration (60 g/L), high initial nitrogen concentration (121.04 mM). Maximum cell density (18.28 g/L) was obtained at 60 g/L of sucrose after 14 days. Cell growth was not so good at low initial sucrose concentration 00 g/L), but the highest hGM-CSF production was obtained at the latter half of exponential phase. hGM-CSF production increased about 3 fold at initial phosphate concentration of 4.96 nM

  • PDF

Statistical Selection of Amino Acids Fortifying a Minimal Defined Medium for a High-level Production of the Kringle Fragments of Human Apolipoprotein(a)

  • Lim, Hyung-Kwon;Kim, Sung-Geun;Jung, Kyung-Hwan;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.90-96
    • /
    • 2004
  • A synthetic defined medium, fortified with amino acids, was developed for the stable production of the kringle fragments of human apolipoprotein(a) (apo(a)), rhLK68. Using a complex rich medium containing yeast extract and a high-cell-density fed-batch culture, the expression level of rhLK68 reached 17% of the total cellular protein, which corresponded to $5\;g\;l^{-1}$ of the culture. To replace the complex media with chemically defined media, several amino acids that positively affect cell growth and gene expression were chosen by a statistical method. The various combinations of the selected amino acids were tested for its fortifying effect on a minimal defined medium. When glutamine only was added, the overall expression level of rhLK68 reached 93% of the complex rich medium increasing the specific expression level by 22.4% and decreasing the cell growth by 24%. Moreover, the addition of glutamine resulted in a 2-fold increase in the concentration of rhLK68 in the culture broth, compared with the minimal defined medium. The synthetic defined media developed in this study could be generally applied to high-cell-density cultures of the recombinant Escherichia coli BL21(DE3), especially for the production of therapeutic proteins that require a strict quality control of the culture media and fermentation processes.