• 제목/요약/키워드: cell movement

검색결과 422건 처리시간 0.026초

Mutational Analysis of Cucumber Mosaic Virus Movement Protein Gene

  • You, Jin-Sam;Baik, Hyung-Suk;Paek, Kyung-Hee
    • BMB Reports
    • /
    • 제32권1호
    • /
    • pp.82-85
    • /
    • 1999
  • The movement protein of cucumber mosaic virus (CMV) is required for cell-to-cell movement of viral RNA. The movement of viral RNA occurs through the plant intercellular connection, the plasmodesmata. The viral movement protein was known to be multi-functional. In this work, a series of deletion mutants of CMV movement protein gene were created to identify the functional domains. The mutated movement proteins were produced as inclusion body in E. coli, and purified and renatured. A polyclonal antibody was raised against the CMV-Kor strain (Korean isolate) movement protein expressed in E. coli. The ability of the truncated proteins to bind to ssRNA was assayed by UV cross-linking and gel retardation analyses. The results indicate that the domain between amino acids 118 and 160 of CMV movement protein is essential for ssRNA binding.

  • PDF

제한된 기계군의 크기하에서 부품의 이동을 최소로 하는 GT기법 (Minimizing the Number of Inter-Cell Movement of Parts with Consideration of a Machine-Cell Size)

  • 박창규
    • 산업공학
    • /
    • 제12권4호
    • /
    • pp.532-539
    • /
    • 1999
  • The first step to design a cellular manufacturing system is to make part-families and machine-cells. This process is called the machine-part grouping. This paper considers a machine-cell size when grouping machine-cells. By considering a machine-cell size, an unrealistically big size of machine-cell which may be caused by the chaining effect can be avoid. A heuristic algorithm which minimizes the number of inter-cell movement of parts considering a machine-cell size is presented. The effectiveness and performance of the proposed heuristic algorithm are compared with those of several heuristic algorithms previously reported. The comparison shows that the proposed heuristic algorithm is efficient and reliable in minimizing the number of inter-cell movement of parts and also prevents the chaining effect.

  • PDF

The Plant Cellular Systems for Plant Virus Movement

  • Hong, Jin-Sung;Ju, Ho-Jong
    • The Plant Pathology Journal
    • /
    • 제33권3호
    • /
    • pp.213-228
    • /
    • 2017
  • Plasmodesmata (PDs) are specialized intercellular channels that facilitate the exchange of various molecules, including sugars, ribonucleoprotein complexes, transcription factors, and mRNA. Their diameters, estimated to be 2.5 nm in the neck region, are too small to transfer viruses or viral genomes. Tobacco mosaic virus and Potexviruses are the most extensively studied viruses. In viruses, the movement protein (MP) is responsible for the PD gating that allows the intercellular movement of viral genomes. Various host factors interact with MP to regulate complicated mechanisms related to PD gating. Virus replication and assembly occur in viral replication complex (VRC) with membrane association, especially in the endoplasmic reticulum. VRC have a highly organized structure and are highly regulated by interactions among the various host factors, proteins encoded by the viral genome, and the viral genome. Virus trafficking requires host machineries, such as the cytoskeleton and the secretory systems. MP facilitates the virus replication and movement process. Despite the current level of understanding of virus movement, there are still many unknown and complex interactions between virus replication and virus movement. While numerous studies have been conducted to understand plant viruses with regards to cell-to-cell movement and replication, there are still many knowledge gaps. To study these interactions, adequate research tools must be used such as molecular, and biochemical techniques. Without such tools, virologists will not be able to gain an accurate or detailed understanding of the virus infection process.

이동 통신망에서의 혼합형 위치 갱신 방법의 성능분석 (Performance Analysis of Hybrid Location Update Strategy in Wireless Communication System)

  • 이구연
    • 산업기술연구
    • /
    • 제26권B호
    • /
    • pp.191-198
    • /
    • 2006
  • In this paper, we focus on a question. Which is better between time-based location update method and movement-based location update method? Or, does any other method combining the two methods show better performance? For the question, we propose a hybrid location update scheme, which integrates the time-based and the movement-based methods. In the proposed scheme, a mobile terminal updates its location after n cell boundary crossing and a time interval of T, or the inverse. We derive an analytical solution for the performance of the hybrid scheme with exponential cell resident time. From the numerical analysis, we conclude that the movement-based method seems to have better performance than the time-based and hybrid methods, that is the optimal costs occur at T=0.

  • PDF

AltMV TGB1 Nucleolar Localization Requires Homologous Interaction and Correlates with Cell Wall Localization Associated with Cell-to-Cell Movement

  • Nam, Jiryun;Nam, Moon;Bae, Hanhong;Lee, Cheolho;Lee, Bong-Chun;Hammond, John;Lim, Hyoun-Sub
    • The Plant Pathology Journal
    • /
    • 제29권4호
    • /
    • pp.454-459
    • /
    • 2013
  • The Potexvirus Alternanthera mosaic virus (AltMV) has multifunctional triple gene block (TGB) proteins, among which our studies have focused on the properties of the TGB1 protein. The TGB1 of AltMV has functions including RNA binding, RNA silencing suppression, and cell-to-cell movement, and is known to form homologous interactions. The helicase domains of AltMV TGB1 were separately mutated to identify which regions are involved in homologous TGB1 interactions. The yeast two hybrid system and Bimolecular Fluorescence Complementation (BiFC) in planta were utilized to examine homologous interactions of the mutants. Helicase motif I of AltMV TGB1 was found to be critical to maintain homologous interactions. Mutations in the remaining helicase motifs did not inhibit TGB1 homologous interactions. In the absence of homologous interaction of TGB1, subcellular localization of helicase domain I mutants showed distinctively different patterns from that of WT TGB1. These results provide important information to study viral movement and replication of AltMV.

Actin Cytoskeleton and Golgi Involvement in Barley stripe mosaic virus Movement and Cell Wall Localization of Triple Gene Block Proteins

  • Lim, Hyoun-Sub;Lee, Mi Yeon;Moon, Jae Sun;Moon, Jung-Kyung;Yu, Yong-Man;Cho, In Sook;Bae, Hanhong;DeBoer, Matt;Ju, Hojong;Hammond, John;Jackson, Andrew O.
    • The Plant Pathology Journal
    • /
    • 제29권1호
    • /
    • pp.17-30
    • /
    • 2013
  • Barley stripe mosaic virus (BSMV) induces massive actin filament thickening at the infection front of infected Nicotiana benthamiana leaves. To determine the mechanisms leading to actin remodeling, fluorescent protein fusions of the BSMV triple gene block (TGB) proteins were coexpressed in cells with the actin marker DsRed: Talin. TGB ectopic expression experiments revealed that TGB3 is a major elicitor of filament thickening, that TGB2 resulted in formation of intermediate DsRed:Talin filaments, and that TGB1 alone had no obvious effects on actin filament structure. Latrunculin B (LatB) treat-ments retarded BSMV cell-to-cell movement, disrupted actin filament organization, and dramatically decreased the proportion of paired TGB3 foci appearing at the cell wall (CW). BSMV infection of transgenic plants tagged with GFP-KDEL exhibited membrane proliferation and vesicle formation that were especially evident around the nucleus. Similar membrane proliferation occurred in plants expressing TGB2 and/or TGB3, and DsRed: Talin fluorescence in these plants colocalized with the ER vesicles. TGB3 also associated with the Golgi apparatus and overlapped with cortical vesicles appearing at the cell periphery. Brefeldin A treatments disrupted Golgi and also altered vesicles at the CW, but failed to interfere with TGB CW localization. Our results indicate that actin cytoskeleton interactions are important in BSMV cell-to-cell movement and for CW localization of TGB3.

Phosphate Number and Acyl Chain Length Determine the Subcellular Location and Lateral Mobility of Phosphoinositides

  • Cho, Hana;Kim, Yeon A;Ho, Won-Kyung
    • Molecules and Cells
    • /
    • 제22권1호
    • /
    • pp.97-103
    • /
    • 2006
  • Phosphoinositides are critical regulators of ion channel and transporter activity. There are multiple isomers of biologically active phosphoinositides in the plasma membrane and the different lipid species are non-randomly distributed. However, the mechanism by which cells impose selectivity and directionality on lipid movements and so generate a non-random lipid distribution remains unclear. In the present study we investigated which structural elements of phosphoinositides are responsible for their subcellular location and movement. We incubated phosphatidylinositol (PI), phosphatidylinositol 4-monophosphate (PI(4)P) and phosphatidylinositol 4,5-bisphosphate ($PI(4,5)P_2$) with short or long acyl chains in CHO and HEK cells. We show that phosphate number and acyl chain length determine cellular location and translocation movement. In CHO cells, $PI(4,5)P_2$ with a long acyl chain was released into the cytosol easily because of a low partition coefficient whereas long chain PI was released more slowly because of a high partition coefficient. In HEK cells, the cellular location and translocation movement of PI were similar to those of PI in CHO cells, whereas those of $PI(4,5)P_2$ were different; some mechanism restricted the translocation movement of $PI(4,5)P_2$, and this is in good agreement with the extremely low lateral diffusion of $PI(4,5)P_2$. In contrast to the dependence on the number of phosphates of the phospholipid head group of long acyl chain analogs, short acyl chain phospholipids easily undergo translocation movement regardless of cell type and number of phosphates in the lipid headgroup.

Electro-wetting Display의 오일의 움직임 제어 방법에 대한 연구 (Study on Controlling Oil Movement in Electro-wetting Display)

  • 김연식;김수영;김태현;송은경;;이승희
    • 한국전기전자재료학회논문지
    • /
    • 제20권2호
    • /
    • pp.173-177
    • /
    • 2007
  • Electro-wetting display (EWD) that displays information by controling movement of fluid is one of the strong candidates for electronic paper display (EPD). In EWD cell. the movement of oil which locates between hydrophobic insulation layer and deionized water is rather random, which makes it difficult to realize gray scale, fast response time, and good color characteristics. In this paper, we investigated how to control the oil movement in specific one direction by surface treatment and pattered electrodes. From these experiments, we could control oil movement in a desired direction.