• Title/Summary/Keyword: cell membrane damage

Search Result 285, Processing Time 0.026 seconds

A Study for the Biologic Changes and Viability of Adipose tissue in Cryopreserved Fat Graft (냉동보관 후 이식한 지방조직의 생물학적 변화와 생존에 관한 연구)

  • Han, Jae-Jeong;Kwon, Yong-Seok;Lee, Jang-Ho;Heo, Jung;Lee, Keun-Cheol;Kim, Myung-Hoon;Kim, Seok-Kwun
    • Archives of Plastic Surgery
    • /
    • v.36 no.2
    • /
    • pp.127-134
    • /
    • 2009
  • Purpose: Adipose tissue injection as a free graft for the correction of soft - tissue deficiency or depression deformity is a widespread procedure in plastic surgery. This study is to analyze the changes and viability of cryopreserved adipose tissue and to find out efficient long - term storage period. Methods: After centrifugation of aspirated abdominal tissues, $10m{\ell}$ of packed Adipose tissue were freezed at $-20^{\circ}C$. For 2, 4, 6, 8 months, each frozen samples were taken and injected into scalp of SCID mice. After 15 weeks, injected Adipose tissue were sampled and analyzed at 2 months interval. We compared and analyzed each group about the weight of the injected fat, histologic impressions, activity of mitochondria, size of a fat cell and rate of survival. Results: Significant weight changes were observed in cryopreservation for 2 months(p<0.05). Histologic changes were observed, independent of the freezing period with H - E stain. Among cryopreservations for 2, 4, 6 months, no significant change were observed. The reduction of mitochondrial enzymatic activity was observed independent of time interval but activity of mitochondrial dehydrogenase was reduced less than 50% in MTT assay. Conclusion: Freezing in $-20^{\circ}C$ for 6 months has no adverse effect to Adipose tissue, but fragile adipocytes, damaged cell membrane during harvesting procedure, were disrupted within 1 - 2 month and the maximum volume reduction were followed less than 2 months. These results demonstrate that tissue preparation cells without membrane damage have the greatest viability level and cryopreservation less than 2 months has great volume effect and cryopreservation for 6 months has stable volume effect.

Delayed Type Hypersensitivity on Abdominal Skim of Mouse by DNCB Sensitization (DNCB에 의한 생쥐 복강피부의 지연형 과민반응에 관한 연구)

  • Kim, Jin-Taek;Park, In-Sick;Ahn, Sang-Hyun
    • The Journal of Dong Guk Oriental Medicine
    • /
    • v.6 no.1
    • /
    • pp.117-128
    • /
    • 1997
  • Abdominal skin tissues of ICR mouse painted with Dinitrochlorobenzene (DNCB) were observed to investigate the delayed type hypersensitivity of skin by chemical allergen as hapten. The abdominal skin tissues were obtained at hour 48 after secondary DNCB sensitization that were stained by Luna's method for mast cell, and immunohistochemical stain method for IL-2 receptor. The superficial perivascular lymphocytic aggregation were shown in basement membrane after DNCB secondary painting and the large size capillaries in dermis were appeared. The infiltration of lymphocyte to epithelium, the vacuolation of epithelial cell and intercellular space were increased. The number of mast cell in dermis was increased and these shape is degranulation type. The number of IL-2 receptor positive cell was increased in dermis. As results indicated that the hypersensitivy of immune system were induced by DNCB, subsequently to damage evoke inflammation in skin.

  • PDF

Chronic Ca2+ influx through voltage-dependent Ca2+ channels enhance delayed rectifier K+ currents via activating Src family tyrosine kinase in rat hippocampal neurons

  • Yang, Yoon-Sil;Jeon, Sang-Chan;Kim, Dong-Kwan;Eun, Su-Yong;Jung, Sung-Cherl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.259-265
    • /
    • 2017
  • Excessive influx and the subsequent rapid cytosolic elevation of $Ca^{2+}$ in neurons is the major cause to induce hyperexcitability and irreversible cell damage although it is an essential ion for cellular signalings. Therefore, most neurons exhibit several cellular mechanisms to homeostatically regulate cytosolic $Ca^{2+}$ level in normal as well as pathological conditions. Delayed rectifier $K^+$ channels ($I_{DR}$ channels) play a role to suppress membrane excitability by inducing $K^+$ outflow in various conditions, indicating their potential role in preventing pathogenic conditions and cell damage under $Ca^{2+}$-mediated excitotoxic conditions. In the present study, we electrophysiologically evaluated the response of $I_{DR}$ channels to hyperexcitable conditions induced by high $Ca^{2+}$ pretreatment (3.6 mM, for 24 hours) in cultured hippocampal neurons. In results, high $Ca^{2+}$-treatment significantly increased the amplitude of $I_{DR}$ without changes of gating kinetics. Nimodipine but not APV blocked $Ca^{2+}$-induced $I_{DR}$ enhancement, confirming that the change of $I_{DR}$ might be targeted by $Ca^{2+}$ influx through voltage-dependent $Ca^{2+}$ channels (VDCCs) rather than NMDA receptors (NMDARs). The VDCC-mediated $I_{DR}$ enhancement was not affected by either $Ca^{2+}$-induced $Ca^{2+}$ release (CICR) or small conductance $Ca^{2+}$-activated $K^+$ channels (SK channels). Furthermore, PP2 but not H89 completely abolished $I_{DR}$ enhancement under high $Ca^{2+}$ condition, indicating that the activation of Src family tyrosine kinases (SFKs) is required for $Ca^{2+}$-mediated $I_{DR}$ enhancement. Thus, SFKs may be sensitive to excessive $Ca^{2+}$ influx through VDCCs and enhance $I_{DR}$ to activate a neuroprotective mechanism against $Ca^{2+}$-mediated hyperexcitability in neurons.

Susceptibility of Two Potato Cultivars to Various Environmental Stresses (다양한 환경스트레스에 대한 감자 2품종의 감수성 분석)

  • Tang, Li;Kwon, Suk-Yoon;Sung, Chang-K;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Journal of Plant Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.405-410
    • /
    • 2003
  • Environmental stress is the major limiting factor in plant productivity. In order to evaluate the stress tolerance of potato plants, leaf discs of two potato cultivars, Atlantic and Superior, were subjected to various stress conditions of high temperature, methyl viologen, H2O2, or $H_2O$$_2$. When potato leaf discs were exposed to high temperature at 37$^{\circ}C$ for 84 hr, Atlantic plants, a cultivar with high sensitivity to heat stress, showed about 20% higher membrane damage than Superior plants. When exposed to 2$\mu$M methyl violgen (MV), a superoxide generating non-selective herbicide, for 36 hr, Atlantic plants also showed about 38% higher membrane damage than Superior plants, and were more susceptible up to 10$\mu$M MV concentration tested. On treatment with 0.75M NaCl, Atlantic plants also had about 45% less chlorophyll contents in leaf discs than Superior plants. There was, however, no difference in chlorophyll content of two cultivars at higher NaCl concentrations. The effect of $H_2O$$_2$ on the two cultivars was mixed. At low $H_2O$$_2$ concentration (25 mM) , Superior plants were more susceptible to $H_2O$$_2$stress after 36 hr. However, at high $H_2O$$_2$ concentration (100 mM), Atlantic plants exhibited higher susceptibility after 36 hr. The results indicate that in vitro leaf discs reflecting the whole plants in this study will be useful for selection and characterization of elite transgenic potato plants with enhanced tolerance to environmental stress.

Genetic Toxicity Test of 8-Hydroxyquinoline by Ames, Micronucleus, Comet Assays and Microarray Analysis

  • Lee, Woo-Sun;Kim, Hyun-Joo;Lee, Eun-Mi;Kim, Joo-Hwan;Suh, Soo-Kyung;Kwon, Kyung-Jin;Sheen, Yhun-Yong;Kim, Seung-Hee;Park, Sue-N.
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.90-97
    • /
    • 2007
  • 8-Hydroxyquinoline is used as antibacterial agent and antioxidant based on its function inducing the chelation of ferrous ion present in host resulting in production of chelated complex. This complex being transported to cell membrane of bacteria and fungi exerts antibacterial and antifungal action. In this study, we have carried out in vitro genetic toxicity tests and microarray analysis to understand the underlying mechanisms and the mode of action of toxicity of 8-hydroxyquinoline. TA1535 and TA98 cells were treated with 8-hydroxyquinoline to test its toxicity by basic genetic toxicity test, Ames and two new in vitro micronucleus and COMET assays were applied using CHO cells and L5178Y cells, respectively. In addition, microarray analysis of differentially expressed genes in L5178Y cells in response to 8-hydroxyquinoline were analyzed using Affymatrix genechip. The result of Ames test was that 8-hydroxyquinoline treatment increased the mutations in base substitution strain TA1535 and likewise, 8-hydroxyquinoline also increased mutations in frame shift TA98. 8-Hydroxyquinoline increased micronuclei in CHO cells and DNA damage in L5178Y. 8-Hdroxyquinoline resulted in positive response in all three tests showing its ability to induce not only mutation but also DNA damage. 783 Genes were initially selected as differentially expressed genes in response to 8-hydroxyquinoline by microarray analysis and 34 genes among them were over 4 times of log fold changed. These 34 genes could be candidate biomarkers of genetic toxic action of 8-hydroxyquinoline related to induction of mutation and/or induction of micronuclei and DNA damage. Further confirmation of these candidate markers related to their biological function will be useful to understand the detailed mode of action of 8-hydroxyquinoline.

Activation of Heme Oxygenase-1 by Mangiferin in Human Retinal Pigment Epithelial Cells Contributes to Blocking Oxidative Damage

  • Cheol Park;Hee-Jae Cha;Hyun Hwangbo;EunJin Bang;Heui-Soo Kim;Seok Joong Yun;Sung-Kwon Moon;Wun-Jae Kim;Gi-Young Kim;Seung-On Lee;Jung-Hyun Shim;Yung Hyun Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.329-340
    • /
    • 2024
  • Mangiferin is a kind of natural xanthone glycosides and is known to have various pharmacological activities. However, since the beneficial efficacy of this compound has not been reported in retinal pigment epithelial (RPE) cells, this study aimed to evaluate whether mangiferin could protect human RPE ARPE-19 cells from oxidative injury mimicked by hydrogen peroxide (H2O2). The results showed that mangiferin attenuated H2O2-induced cell viability reduction and DNA damage, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione (GSH). Mangiferin also antagonized H2O2-induced inhibition of the expression and activity of antioxidant enzymes such as manganese superoxide dismutase and GSH peroxidase, which was associated with inhibition of mitochondrial ROS production. In addition, mangiferin protected ARPE-19 cells from H2O2-induced apoptosis by increasing the Bcl-2/Bax ratio, decreasing caspase-3 activation, and blocking poly(ADP-ribose) polymerase cleavage. Moreover, mangiferin suppressed the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Furthermore, mangiferin increased the expression and activity of heme oxygenase-1 (HO-1) and nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the inhibition of ROS production, cytoprotective and anti-apoptotic effects of mangiferin were significantly attenuated by the HO-1 inhibitor, indicating that mangiferin promoted Nrf2-mediated HO-1 activity to prevent ARPE-19 cells from oxidative injury. The results of this study suggest that mangiferin, as an Nrf2 activator, has potent ROS scavenging activity and may have the potential to protect oxidative stress-mediated ocular diseases.

Protective Effects of Bojungmyunyuk-dan in Cisplatin Treated Brain Cell Death (Cisplatin에 의한 뇌세포사멸에서 보중면역단의 방어효과)

  • Yoo Kyung Tae;Moon Seok Jae;Won Jin Hee;Kim Dong Woung;Lee Jong Deok;Won Kyoung Sook;Moon Goo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.394-402
    • /
    • 2003
  • This study was designed to investigate the protective effect of Bojungmyunyuk-dan(BJMY-Dan) on the cisplatin-induced cytotoxicity of primary rat astrocytes. BJMY-Dan is an oriental herbal prescription for its ability to recover protective effects against anti-cancer chemotherapies. After astrocytes were treated cisplatin, MTT assay was performed for cell viability test. To explore the mechanism of cytotoxicity, I used the several measures of apoptosis to determine whether this processes was involved in cisplatin-induced cell damage in astrocytes. Also, astrocytes were treated with BJMY-Dan and then, followed by the addition of cisplatin. Cisplatin decreased the viability of astrocytes in a dose and time-dependent manner. BJMY-Dan increased the viability of astrocytes treated cisplatin. Astrocytes treated cisplatin were revealed as apoptosis characterized by nuclear staining and flow cytometry. BJMY-Dan protected astrocytes from cisplatin-induced nuclear fragmentation and chromatin condensation. Also, caspase-3 and caspase-9 proteases were activated in astrocytes by cisplatin. BJMY-Dan inhibited the activation of caspase proteases in cisplatin-treated astrocytes. Cleavage of [poly(ADP-ribose) polymerase](PARP) was occurred at 12hr after treatment of cisplatin in astrocytes. BJMY-Dan recovered the cleavage of PARP in cisplatin-treated astrocytes. Also, BJMY-Dan inhibited the activation of pro-apoptotic factor, Bak by cisplatin. Lastly, astrocytes stained with JC-1 and Rhodamine 123 were photographed by fluorescence microscope to visualize changes of mitochondrial membrane permeability transition(MPT) during treatment with cisplatin for 24hr. BJMY-Dan recovered the change of MPT by cisplatin in astrocytes. According to above results, BJMY-Dan may protect astrocytes from cytotoxicity induced by chemotherapeutic agents, including cisplatin.

Kaempferol Activates G2-Checkpoint of the Cell Cycle Resulting in G2-Arrest and Mitochondria-Dependent Apoptosis in Human Acute Leukemia Jurkat T Cells

  • Kim, Ki Yun;Jang, Won Young;Lee, Ji Young;Jun, Do Youn;Ko, Jee Youn;Yun, Young Ho;Kim, Young Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.287-294
    • /
    • 2016
  • The effect of kaempferol (3,5,7,4-tetrahydroxyflavone), a flavonoid compound that was identified in barnyard millet (Echinochloa crus-galli var. frumentacea) grains, on G2-checkpoint and apoptotic pathways was investigated in human acute leukemia Jurkat T cell clones stably transfected with an empty vector (J/Neo) or a Bcl-xL expression vector (J/Bcl-xL). Exposure of J/Neo cells to kaempeferol caused cytotoxicity and activation of the ATM/ATR-Chk1/Chk2 pathway, activating the phosphorylation of p53 (Ser-15), inhibitory phosphorylation of Cdc25C (Ser-216), and inactivation of cyclin-dependent kinase 1 (Cdk1), with resultant G2-arrest of the cell cycle. Under these conditions, apoptotic events, including upregulation of Bak and PUMA levels, Bak activation, mitochondrial membrane potential (Δψm) loss, activation of caspase-9, -8, and -3, anti-poly (ADP-ribose) polymerase (PARP) cleavage, and accumulation of apoptotic sub-G1 cells, were induced without accompanying necrosis. However, these apoptotic events, except for upregulation of Bak and PUMA levels, were completely abrogated in J/Bcl-xL cells overexpressing Bcl-xL, suggesting that the G2-arrest and the Bcl-xL-sensitive mitochondrial apoptotic events were induced, in parallel, as downstream events of the DNA-damage-mediated G2-checkpoint activation. Together these results demonstrate that kaempferol-mediated antitumor activity toward Jurkat T cells was attributable to G2-checkpoint activation, which caused not only G2-arrest of the cell cycle but also activating phosphorylation of p53 (Ser-15) and subsequent induction of mitochondria-dependent apoptotic events, including Bak and PUMA upregulation, Bak activation, Δψm loss, and caspase cascade activation.

Preventive Characteristics of Garlic Extracts Using in vitro Model System on Alzheimer's Disease (In vitro model system을 활용한 마늘 추출물의 치매예방 특성)

  • Choi, Gwi-Nam;Kim, Ji-Hye;Kwak, Ji-Hyun;Jeong, Chang-Ho;Jeong, Hee-Rok;Shin, Jung-Hye;Kang, Min-Jung;Sung, Nak-Ju;Heo, Ho-Jin
    • Journal of agriculture & life science
    • /
    • v.44 no.4
    • /
    • pp.45-55
    • /
    • 2010
  • In this study, the acetylcholinesterase (AChE) inhibition and neuronal cell protective effects of water, 100% methanol and dichlromethane extracts from garlic were investigated. We found that dichloromethane extract of garlic resulted in a dose-dependent manner on AChE inhibition ($IC_{50}$: $36.1{\mu}g/mL$). In cell viability assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT), cell viabilities of water, 100% methanol and dichlromethane extracts were lower (almost under 40%) than amyloid ${\beta}$ protein ($A{\beta}$)-induced neurotoxicity. Because $A{\beta}$ is also known to increase neuronal cell membrane breakdown, neuronal apoptosis was further confirmed by lactate dehydrogenase (LDH) and neutral red uptake (NRU) assay. Water extract presented relative protection against $A{\beta}$-induced membrane damage in LDH assay. However all garlic extracts showed significant problem with decrease of cell viability in NRU assay, especially at dichloromethan extract. To determine active compounds in column fractions (98:2 fraction) from dichloromethane extract which showed significant AChE inhibitory effect, we performed HPLC and LC-MS analysis. It was supposed that garlic may contain allyl methyl disulfide, diallyl monosulfide, and diallyl disulfide as active compounds.

Effects of Antioxidants Treatment on the Cryopreservation of Human Hematopoietic Stem Cells (인간 조혈모 줄기세포의 냉동보존에 미치는 항산화제의 영향)

  • Kim, Eung-Bae;Hong, Soon-Gab;Do, Byung-Rok;Kim, Kyung-Suk;Lee, Joon-Yeong
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.67-76
    • /
    • 2008
  • Oxidative damage resulted from reactive oxygen species (ROS) is one of the main causes for the decrease of the viability during in vitro culture and cryopreservation process. This experiment was performed to determine the effects of antioxidants on the human hematopoietic stem cell (HSC) during cryopreservation procedure. HSCs cultured in vitro with or without antioxidants were frozen and then examined for stem cell potential after thawing. The cell viability of thawed HSC was increased in $\alpha$-tocopherol and ascorbic acid treatment group compared to control group ($62.7{\pm}8.0%$) and it was higher in 150 uM $\alpha$-tocopherol treatment group ($70.5{\pm}7.0%$). No significant difference was observed in the membrane integrity in all groups. In auto-differentiation rate, no significant difference was appeared in all groups, but was lower in 150 uM $\alpha$-tocopherol ($7.3{\pm}2.6%$) compared to control group ($10.1{\pm}1.6%$). These results demonstrate that treatment of antioxidants improves the efficiency of cryopreservation for HSC and $\alpha$-tocopherol may be considered effective antioxidant for the protective effect on HSC.

  • PDF