• Title/Summary/Keyword: cell library

Search Result 572, Processing Time 0.023 seconds

Bacterial ${\beta}$-Lactamase Fragment Complementation Strategy Can Be Used as a Method for Identifying Interacting Protein Pairs

  • Park, Jong-Hwa;Back, Jung-Ho;Hahm, Soo-Hyun;Shim, Hye-Young;Park, Min-Ju;Ko, Sung-Il;Han, Ye-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1607-1615
    • /
    • 2007
  • We investigated the applicability of the TEM-l ${\beta}$-lactamase fragment complementation (BFC) system to develop a strategy for the screening of protein-protein interactions in bacteria. A BFC system containing a human Fas-associated death domain (hFADD) and human Fas death domain (hFasDD) was generated. The hFADD-hFasDD interaction was verified by cell survivability in ampicillin-containing medium and the colorimetric change of nitrocefin. It was also confirmed by His pull-down assay using cell lysates obtained in selection steps. A coiled-coil helix coiled-coil domain-containing protein 5 (CHCH5) was identified as an interacting protein of human uracil DNA glycosylase (hUNG) from the bacterial BFC cDNA library strategy. The interaction between hUNG and CHCH5 was further confirmed with immunoprecipitation using a mammalian expression system. CHCH5 enhanced the DNA glycosylase activity of hUNG to remove uracil from DNA duplexes containing a U/G mismatch pair. These results suggest that the bacterial BFC cDNA library strategy can be effectively used to identify interacting protein pairs.

Lipase Diversity in Glacier Soil Based on Analysis of Metagenomic DNA Fragments and Cell Culture

  • Zhang, Yuhong;Shi, Pengjun;Liu, Wanli;Meng, Kun;Bai, Yingguo;Wang, Guozeng;Zhan, Zhichun;Yao, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.888-897
    • /
    • 2009
  • Lipase diversity in glacier soil was assessed by culture-independent metagenomic DNA fragment screening and confirmed by cell culture experiments. A set of degenerate PCR primers specific for lipases of the hormone-sensitive lipase family was designed based on conserved motifs and used to directly PCR amplify metagenomic DNA from glacier soil. These products were used to construct a lipase fragment clone library. Among the 300 clones sequenced for the analysis, 201 clones encoding partiallipases shared 51-82% identity to known lipases in GenBank. Based on a phylogenetic analysis, five divergent clusters were established, one of which may represent a previously unidentified lipase subfamily. In the culture study, 11 lipase-producing bacteria were selectively isolated and characterized by 16S rDNA sequences. Using the above-mentioned degenerate primers, seven lipase gene fragments were cloned, but not all of them could be accounted for by the clones in the library. Two full-length lipase genes obtained by TAIL-PCR were expressed in Pichia pastoris and characterized. Both were authentic lipases with optimum temperatures of ${\le}40^{\circ}C$. Our study indicates the abundant lipase diversity in glacier soil as well as the feasibility of sequence-based screening in discovering new lipase genes from complex environmental samples.

Morpho-molecular characterization of diatom Skeletonema pseudocostatum(Thalassiosirales, Bacillariophyta) from the Korean coast (규조류 Skeletonema pseudocostatum Medlin (Thalassiosirales, Bacillariohyta)의 형태적 특징과 분자계통학적 위치)

  • Han, Kyong Ha;Li, Zhun;Park, Joon Sang;Youn, Joo Yeon;Kim, Hyun Jung;Kwak, Kyeong Yoon;Oh, Seok Jin;Shin, Hyeon Ho
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.1
    • /
    • pp.21-29
    • /
    • 2020
  • Morphology of a strain of unspecified Skeletonema species established from Korean coast was examined by light, fluorescence and scanning electron microscopy, and SSU(small subunit) and LSU(large subunit) rDNA of the strain were also sequenced. The specimen was characterized by solitary or short chains, and each cell contained 1-2 chloroplasts. The valve face was slightly convex, and the terminal fultoportula processes (TFPPs) were open and showed narrow distal ends that could be truncated or spiny with claw-like protrusions. The basal part of the TFPPs was tubular and oblique to the cell axis. The intercalary fultoportula processes (IFPPs) were also narrow, completely open, and joined in a 1 : 1 junction. Occasionally, one IFPP was connected with two opposing IFPPs. The morphological features of the specimen were identical to those of Skeletonema pseudocostatum. Molecular phylogeny based on SSU rDNA revealed that the Korean strain is nested within a clade comprising S. pseudocostatum and S. tropicum. However, based on D1-D2 LSU rDNA sequences, a clade including S. pseudocostatum and a Korean strain was separated from the S. tropicum clade. This indicates that the Korean strain can be identified as S. pseudocostatum. This species represents the first record from Korean coastal waters.

Purification and Glycosylation Pattern of Human L-Ferritin in Pichia pastoris

  • Lee, Jong-Lim;Yang, Seung-Nam;Park, Cheon-Seok;Jeoung, Doo-Il;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.68-73
    • /
    • 2004
  • Ferritin is an iron storage protein found in most living organisms. For expression and industrial use, human light chain ferritin (L-ferritin) was cloned from human liver cDNA library and expressed in Pichia pastoris strain GS115. The recombinant L-ferritin in Pichia pastoris was glycosylated. In a fed-batch culture, the cell mass reached about 57 g/l of dry cell weight, and the L-ferritin in the cell was increased to about 95 mg/l after 150 h. In an atomic absorption spectrometry analysis, the intracellular content of iron in the L-ferritin transformant was measured as $1,694{\pm}85\;\mu\textrm{g}g/g$, which is 5.4-fold more than that of the control strain. This L-ferritin transformant could serve as iron-fortified nutrients in animal feed stock.

Effect of AC-264, a Novel Indole Derivative, on Apoptosis in HL-60 Cells

  • Lee, Kyeong;Kwon, Ok-Kyoung;Xia, Yan;Ahn, Kyung-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3777-3781
    • /
    • 2010
  • The anticancer effect and apoptotic mechanism of a novel indole derivative AC-264, a lead derived from a chemical library, were investigated in human promyelocytic leukemia HL-60 cells. HL-60 cells treated with AC-264 at various concentrations showed the morphological features of apoptosis, such as plasma membrane blebbing and cell shrinkage. AC-264 exhibited cytotoxic effect in various cancer cell lines with different degrees of potency. Especially, AC-264 was effective on increasing the population of apoptotic cells in HL-60 cells, as detected by the number of cells stained with Annexin V and PI. Furthermore, AC-264 activated caspase-3 enzyme activity and induced internucleosomal DNA fragmentation. These results indicated that AC-264 produces anti-cancer effect via apoptotic cell death by activating caspase-3 and inducing internucleosomal DNA fragmentation in HL-60 cells.

Combinatorial Solid Phase Peptide Synthesis and Bioassays

  • Shin, Dong-Sik;Kim, Do-Hyun;Chung, Woo-Jae;Lee, Yoon-Sik
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.517-525
    • /
    • 2005
  • Solid phase peptide synthesis method, which was introduced by Merrifield in 1963, has spawned the concept of combinatorial chemistry. In this review, we summarize the present technologies of solid phase peptide synthesis (SPPS) that are related to combinatorial chemistry. The conventional methods of peptide library synthesis on polymer support are parallel synthesis, split and mix synthesis and reagent mixture synthesis. Combining surface chemistry with the recent technology of microelectronic semiconductor fabrication system, the peptide microarray synthesis methods on a planar solid support are developed, which leads to spatially addressable peptide library. There are two kinds of peptide microarray synthesis methodologies: pre-synthesized peptide immobilization onto a glass or membrane substrate and in situ peptide synthesis by a photolithography or the SPOT method. This review also discusses the application of peptide libraries for high-throughput bioassays, for example, peptide ligand screening for antibody or cell signaling, enzyme substrate and inhibitor screening as well as other applications.

Development of BIM Based Information Model Interface Module for a Modular Pier (모듈러 교각의 BIM 기반 정보 모델 인터페이스 모듈 개발)

  • Kim, Dong-Wook;Lee, Kwang-Myong;Nam, Sang-Hyeok
    • Journal of KIBIM
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Modular technology has become a major issue of the construction industries to enhance their productivity. Modular bridge construction generally requires the data exchange between the contractors, designers, fabricators and constructors. Therefore, a readily accessible information model interface module based on BIM technology is essential for their communication during a project life-cycle. In this study, BIM based information model interface module for a modular pier was developed. For the information models, the PBS(Product Breakdown Structure) and LOD(Level of Development) were defined. Next, all components of a modular pier were conducted by the parametric modeling technique, and then 3D cell library interface was developed. An nterface module was also developed using VBA(Visua basic Application) for exchanging a data from 3D model library to other softwares such as Microstation, AutoCad and Excel and was connected with MS Access database. The developed information model interface module would improve the design quality of the modular pier and reduce the time and cost for design. Updated 3D information models could be utilized for the fabrication, assembly, and construction process for modular piers.

Identification of Small GTPases That Phosphorylate IRF3 through TBK1 Activation Using an Active Mutant Library Screen

  • Jae-Hyun Yu;Eun-Yi Moon;Jiyoon Kim;Ja Hyun Koo
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.48-58
    • /
    • 2023
  • Interferon regulatory factor 3 (IRF3) integrates both immunological and non-immunological inputs to control cell survival and death. Small GTPases are versatile functional switches that lie on the very upstream in signal transduction pathways, of which duration of activation is very transient. The large number of homologous proteins and the requirement for site-directed mutagenesis have hindered attempts to investigate the link between small GTPases and IRF3. Here, we constructed a constitutively active mutant expression library for small GTPase expression using Gibson assembly cloning. Small-scale screening identified multiple GTPases capable of promoting IRF3 phosphorylation. Intriguingly, 27 of 152 GTPases, including ARF1, RHEB, RHEBL1, and RAN, were found to increase IRF3 phosphorylation. Unbiased screening enabled us to investigate the sequence-activity relationship between the GTPases and IRF3. We found that the regulation of IRF3 by small GTPases was dependent on TBK1. Our work reveals the significant contribution of GTPases in IRF3 signaling and the potential role of IRF3 in GTPase function, providing a novel therapeutic approach against diseases with GTPase overexpression or active mutations, such as cancer.

Development of a Simple Cell Lysis Method for Recombinant DNA Using Bacteriophage Lambda Lysis Genes

  • Jang, Bo-Yun;Jung, Yun-A;Lim, Dong-Bin
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.593-596
    • /
    • 2007
  • In this study, we describe the development of a simple and efficient method for cell lysis via the insertion of a bacteriophage lambda lysis gene cluster into the pET22b expression vector in the following order; the T7 promoter, a gene for a target protein intended for production, Sam7 and R. This insertion of R and Sam7 into pET22b exerted no detrimental effects on cellular growth or the production of a target protein. The induction of the T7 promoter did not in itself result in the autolysis of cells in culture but the harvested cells were readily broken by freezing and thawing. We compared the efficiency of the cell lysis technique by freezing and thawing to that observed with sonication, and determined that both methods completely disintegrated the cells and released proteins into the solution. With our modification of pET22b, the lysis of cells became quite simple, efficient, and reliable. This strategy may prove useful for a broad variety of applications, particularly in experiments requiring extensive cell breakage, including library screening and culture condition exploration, in addition to protein purification.

A Novel Monoclonal Antibody Induces Cancer Cell Apoptosis and Enhances the Activity of Chemotherapeutic Drugs

  • Xu, Heng;Tian, Yan-Na;Dun, Bo-Ying;Liu, Hai-Tao;Dong, Guang-Kuo;Wang, Jin-Hua;Lu, Shang-Su;Chen, Bo;She, Jin-Xiong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4423-4428
    • /
    • 2014
  • A novel monoclonal antibody (mAb), known as AC10364, was identified from an antibody library generated by immunization of mice with human carcinoma cells. The mAb recognized proteins in lysates from multiple carcinoma cell lines. Cell cytotoxicity assays showed that AC10364 significantly inhibited cell growth and induced apoptosis in multiple carcinoma cell lines, including Bel/fu, KATO-III and A2780. Compared with mAb AC10364 or chemotherapeutic drugs alone, the combination of mAb AC10364 with chemotherapeutic drugs demonstrated enhanced growth inhibitory effects on carcinoma cells. These results suggest that mAb AC10364 is a promising candidate for cancer therapy.