• 제목/요약/키워드: cell infection

검색결과 1,725건 처리시간 0.029초

Evaluation of Boldine Activity against Intracellular Amastigotes of Leishmania amazonensis

  • Salama, Isabel Cristina;Arrais-Lima, Cristina;Arrais-Silva, Wagner Welber
    • Parasites, Hosts and Diseases
    • /
    • 제55권3호
    • /
    • pp.337-340
    • /
    • 2017
  • Leishmaniasis is a neglected and endemic disease that affects poorest population mainly in developing countries. A lack of adequate and definitive chemotherapeutic agents to fight against this infection has led to the investigation of numerous compounds. The aim of this study was to investigate in vitro activity of boldine against Leishmania amazonensis murine cell infection. Boldine ((S)-2,9-dihydroxy-1,10-dimethoxy-aporphine) is an aporphine alkaloid found abundantly in the leaves/bark of boldo (Peumus boldus Molina), a widely distributed tree native to Chile. The in vitro system consisted of murine macrophage infection with amastigotes of L. amazonensis treated with different concentrations from 50 to $600{\mu}g/ml$ of boldine for 24 hr. Intracellular parasite destruction was assessed by morphological examination and boldine cytotoxicity to macrophages was tested by the MTT viability assay. When cells were treated with $100{\mu}g/ml$ of boldine the reduction of parasite infection was 81% compared with untreated cultures cells. Interestingly, boldine-treatment caused a concentration-dependent decrease of macrophage infection that culminated with 96% of reduction when cells were submitted to $600{\mu}g/ml$ of boldine. Cell cultures exposed to $100{\mu}g/ml$ of boldine and $300{\mu}g/ml$ of $Glucantime^{(R)}$ during 24 hr showed a significant reduction of 50% in parasitized cells compared with cell cultures exposed just to $Glucantime^{(R)}$. The study showed that treatment with boldine produces a better effect than treatment with the reference antimonial drug, glucantime, in L. amazonensis infected macrophage. Our results suggest that boldine is a potentially useful agent for the treatment of leishmaniasis.

천초 추출물의 면역 조절 효과 (Immune-modulator Effect of Zanthoxyli Pericarpium Watet Extract)

  • 신혜영;장인애;장문희;김윤철;윤용갑;박현
    • 동의생리병리학회지
    • /
    • 제22권2호
    • /
    • pp.410-414
    • /
    • 2008
  • In the recently, increased concern has been focused on the pharmacology and clinical utility of herbal extracts and derivatives as a drug or adjunct to chemotherapy and immunotherapy. Here we investigated the modulatory effects of the extract of Zanthoxyli Pericarpium (ZP) in production of inflammatory mediators from Raw264.7 cells and expression of CD86, CD14, toll-like receptor (TLR)-4 from peritoneal macrophage. ZP enhanced the production of NO and $TNF-{\alpha}$ as well as mRNA expression of iNOS and $TNF-{\alpha}$. Treatment of peritoneal macrophage with ZP resulted in the enhanced cell-surface molecules expression of CD86, CD14 and TLR4. We assayed the effect of ZP in cell proliferation and production of $IFN-{\gamma},\;TNF-{\alpha}$. ZP increased Con A-induced cell proliferation and production of $IFN-{\gamma},\;TNF-{\alpha}$. These studies indicate that ZP induces macrophage activation and suggest the possible use of ZP in macrophage-based immunotherapies

Association of FOXP3 Single Nucleotide Polymorphisms With Clinical Outcomes After Allogenic Hematopoietic Stem Cell Transplantation

  • Nam, Minjeong;Shin, Sue;Park, Kyoung Un;Kim, Inho;Yoon, Sung-Soo;Kwon, Tack-Kyun;Song, Eun Young
    • Annals of Laboratory Medicine
    • /
    • 제38권6호
    • /
    • pp.591-598
    • /
    • 2018
  • Background: Forkhead box P3 (FOXP3) is an important marker of regulatory T cells. FOXP3 polymorphisms are associated with autoimmune diseases, cancers, and allograft outcomes. We examined whether single nucleotide polymorphisms (SNPs) at the FOXP3 locus are associated with clinical outcomes after allogenic hematopoietic stem cell transplantation (HSCT). Methods: Five FOXP3 SNPs (rs5902434, rs3761549, rs3761548, rs2232365, and rs2280883) were analyzed by PCR-sequencing of 172 DNA samples from allogenic HSCT patients. We examined the relationship between each SNP and the occurrence of graft-versus-host disease (GVHD), post-HSCT infection, relapse, and patient survival. Results: Patients with acute GVHD (grades II-IV) showed higher frequencies of the rs3761549 T/T genotype, rs5902434 ATT/ATT genotype, and rs2232365 G/G genotype than did patients without acute GVHD (P =0.017, odds ratio [OR]=5.3; P =0.031, OR=2.4; and P =0.023, OR=2.6, respectively). Multivariate analysis showed that the TT genotype of rs3761549 was an independent risk factor for occurrence of acute GVHD (P =0.032, hazard ratio=5.6). In contrast, the genotype frequencies of rs3761549 T/T, rs5902434 ATT/ATT, and rs2232365 G/G were lower in patients with post-HSCT infection than in patients without infection (P =0.026, P =0.046, and P =0.031, respectively). Conclusions: rs3761549, rs5902434, and rs2232365 are associated with an increased risk of acute GVHD and decreased risk of post-HSCT infection.

SARS-CoV-2 Infection Induces HMGB1 Secretion Through Post-Translational Modification and PANoptosis

  • Man Sup Kwak;Seoyeon Choi;Jiseon Kim;Hoojung Lee;In Ho Park;Jooyeon Oh;Duong Ngoc Mai;Nam-Hyuk Cho;Ki Taek Nam;Jeon-Soo Shin
    • IMMUNE NETWORK
    • /
    • 제23권3호
    • /
    • pp.25.1-25.17
    • /
    • 2023
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection induces excessive pro-inflammatory cytokine release and cell death, leading to organ damage and mortality. High-mobility group box 1 (HMGB1) is one of the damage-associated molecular patterns that can be secreted by pro-inflammatory stimuli, including viral infections, and its excessive secretion levels are related to a variety of inflammatory diseases. Here, the aim of the study was to show that SARS-CoV-2 infection induced HMGB1 secretion via active and passive release. Active HMGB1 secretion was mediated by post-translational modifications, such as acetylation, phosphorylation, and oxidation in HEK293E/ACE2-C-GFP and Calu-3 cells during SARS-CoV-2 infection. Passive release of HMGB1 has been linked to various types of cell death; however, we demonstrated for the first time that PANoptosis, which integrates other cell death pathways, including pyroptosis, apoptosis, and necroptosis, is related to passive HMGB1 release during SARS-CoV-2 infection. In addition, cytoplasmic translocation and extracellular secretion or release of HMGB1 were confirmed via immunohistochemistry and immunofluorescence in the lung tissues of humans and angiotensin-converting enzyme 2-overexpressing mice infected with SARS-CoV-2.

구제역의 병리기전 및 진단, 예방백신 개발 (Pathogenesis, Dianosis, and Prophylactic Vaccine Development for Foot-and-Mouth Disease)

  • 문선화;양주성
    • Applied Biological Chemistry
    • /
    • 제48권4호
    • /
    • pp.301-310
    • /
    • 2005
  • 구제역(Foot-and-Mouth Disease: FMD)이란 소, 돼지, 양, 염소 등의 cloven-hoofed 동물에서 나타나는 바이러스성 질병으로 입, 코, 유두, 발굽 등에 수포가 형성되는 것이 특징이다. 일곱 가지 혈청형(O, A, C, Asia1, SAT1, SAT2 and SAT3)으로 분류되는 구제역바이러스(Foot-and-Mouth Disease Virus: FMDV)는 single stranded positive RNA virus로 nonenveloped capsid virus이다. Viral genome은 8.2 Kb로 하나의 ORF인 polyprotein으로 되어있으며, 크게 capsid protein coding region인 P1, replication related protein coding region인 P2, RNA dependent RNA polymerase coding region인 P3로 구성된다. FMDV는 respiratory tract의 pharynx epithelial cell에 감염되며, lung epithelial cell에서 replication을 한다. 구제역바이러스는 감염율은 높지만 낮은 치사율을 가진다. 2002년 한국에서 구제역이 발병하여 많은 경제적 손실을 입었다. FMDV의 감염을 조절할 수 있는 조절방법이 없는 실정이며, 현재 많은 나라에서는 구제역바이러스의 감염을 막을 수 있는 효과적인 방법을 연구하고 있다. 본 보고서에서는 FMD에 대한 보다 효과적인 예방법인 DNA vaccine, edible vaccine, peptide vaccine에 대해 고찰하였다.

어류 주화세포에서의 계대배양에 의한 해양버나바이러스의 감염특성의 변화 (Change of Infection Properties of Subcultured Marine Birnavirus in Several Fish Cell Lines)

  • 정성주
    • 한국어병학회지
    • /
    • 제11권2호
    • /
    • pp.89-96
    • /
    • 1998
  • 해양버나바이러스(MABV)는 여러 종의 해양생물에 감염되며 숙주역이 넓다. 다양한 종의 숙주에 감염되었을 때의 MABV의 감염 특성을 규명하기 위하여, 주화세포 내에서 바이러스를 10대 계대 배양하여 in vitro로 연구했다. CHSE-214, RTG-2와 RSBK-2세포에서는 전형적인 CPE를 보이며 많은 양의 바이러스가 생산되었고, 높은 바이러스 단백질의 발현도 관찰되었다. 이에 반하여, EPC, FHM과 BF-2세포에서는 형광항체법에 의하여 바이러스단백질은 검출되었으나 CPE는 나타나지 않았다. EPC와 FHM 세포에서는 계대를 할수록 바이러스의 역가가 높아져, 바이러스의 숙주세포에의 적응이 일어난 것으로 보인다. 플라크의 크기는 CHSE-214, RTG-2와 RSBK-2세포에서 계대한 것이 다른 세포에서 계대한 것보다 커, 숙주세포의 종류에 따른 변이가 바이러스에 일어난 것으로 추측되었다. 게놈분절 A에 존재하는 VP2/NS 경계영역의 염기배열에서는 195번째의 염기에 특이적인 변이가 보였다. 숙주세포의 종류에 따라 다른 MABV의 감염특성은 자연계에서 다양한 숙주종에서 일어나는 in vivo에서의 감염특성을 반영하는 것으로 생각된다.

  • PDF

IL-17 and IL-17C Signaling Protects the Intestinal Epithelium against Diisopropyl Fluorophosphate Exposure in an Acute Model of Gulf War Veterans' Illnesses

  • Kristen M. Patterson;Tyler G. Vajdic;Gustavo J. Martinez;Axel G. Feller;Joseph M. Reynolds
    • IMMUNE NETWORK
    • /
    • 제21권5호
    • /
    • pp.35.1-35.16
    • /
    • 2021
  • Gulf War Veterans' Illnesses (GWI) encompasses a broad range of unexplained symptomology specific to Veterans of the Persian Gulf War. Gastrointestinal (GI) distress is prominent in veterans with GWI and often presents as irritable bowel syndrome (IBS). Neurotoxins, including organophosphorus pesticides and sarin gas, are believed to have contributed to the development of GWI, at least in a subset of Veterans. However, the effects of such agents have not been extensively studied for their potential impact to GI disorders and immunological stability. Here we utilized an established murine model of GWI to investigate deleterious effects of diisopropyl fluorophosphate (DFP) exposure on the mucosal epithelium in vivo and in vitro. In vivo, acute DFP exposure negatively impacts the mucosal epithelium by reducing tight junction proteins and antimicrobial peptides as well as altering intestinal microbiome composition. Furthermore, DFP treatment reduced the expression of IL-17 in the colonic epithelium. Conversely, both IL-17 and IL-17C treatment could combat the negative effects of DFP and other cholinesterase inhibitors in murine intestinal organoid cells. Our findings demonstrate that acute exposure to DFP can result in rapid deterioration of mechanisms protecting the GI tract from disease. These results are relevant to suspected GWI exposures and could help explain the propensity for GI disorders in GWI Veterans.

Vasorelaxing Activity of Ulmus davidiana Ethanol Extracts in Rats: Activation of Endothelial Nitric Oxide Synthase

  • Cho, Eun-Jung;Park, Myoung-Soo;Kim, Sahng-Seop;Kang, Gun;Choi, Sung-A;Lee, Yoo-Rhan;Chang, Seok-Jong;Lee, Kwon-Ho;Lee, Sang-Do;Park, Jin-Bong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권6호
    • /
    • pp.339-344
    • /
    • 2011
  • Ulmus davidiana var. japonica Rehder (Urticales: Ulmaceae) (UD) is a tree widespread in northeast Asia. It is traditionally used for anticancer and anti-inflammatory therapy. The present study investigated the effect of an ethanol extract of UD on vascular tension and its underlying mechanism in rats. The dried root bark of UD was ground and extracted with 80% ethanol. The prepared UD extract was used in further analysis. The effect of UD on the cell viability, vasoreactivity and hemodynamics were investigated using propidium iodide staining in cultured cells, isometric tension recording and blood pressure analysis, respectively. Low dose of UD ($10{\sim}100{\mu}g/ml)$ did not affect endothelial cell viability, but high dose of UD reduced cell viability. UD induced vasorelaxation in the range of $0.1{\sim}10{\mu}g/ml$ with an $ED_{50}$ value of $2{\mu}g/ml$. UD-induced vasorelaxation was completely abolished by removal of the endothelium or by pre-treatment with L-NAME, an inhibitor of nitric oxide synthase. UD inhibited calcium influx induced by phenylephrine and high $K^+$ and also completely abolished the effect of L-NAME. Intravenous injection of UD extracts (10~100 mg/kg) decreased arterial and ventricular pressure in a dose-dependent manner. Moreover, UD extracts reduced the ventricular contractility (+dP/dt) in anesthetized rats. However, UD-induced hypotensive actions were minimized in L-NAME-treated rats. Taken together, out results showed that UD induced vasorelaxation and has antihypertensive properties, which may be due the activation of nitric oxide synthase in endothelium.

Estimation of Seroconversion Dates of HIV by Imputation Based on Regression Models

  • Lee, Seungyeoun
    • Communications for Statistical Applications and Methods
    • /
    • 제8권3호
    • /
    • pp.815-822
    • /
    • 2001
  • The aim of this study is to estimate the seroconversion date of the human immunodeficiency virus(HIV) infection for the HIV infected patients in Korea. Data are collected from two cohorts. The first cohort is a group of "seroprevalent" patients who were seropositive and AIDS-free at entry. The other is a group of "seroincident" patients who were initially seronegative but later converted to HIV antibody-positive. The seroconversion dates of the seroincident cohort are available while those of the seroprevalent cohort are not. Estimation of seroconversion date is important because it can be used to calculate the incubation period of AIDS which is defined as the elapsed time between the HIV infection and the development of AIDS. In this paper, a Weibull regression model Is fitted for the seroincident cohort using information about the elapsed time since seroconversion and the CD4$^{+}$ cell count.The seroconversion dates for the seroprevalent cohort are imputed on the basis of the marker of maturity of HIV infection percent of CD4$^{+}$cell count.unt.

  • PDF

Ultrastructural Changes in Midgut of CPV infected Tropical Tasar Silkworm, Antheraea mylitta (D) (Lepidoptera : Saturniidae)

  • Barsagade, Deepak Deewaji;Kadwey, Mangala Nimbaji
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제21권1호
    • /
    • pp.117-125
    • /
    • 2010
  • The tropical tasar silkworms, Antheraea mylitta (D) produce famous silk 'Kosa' in central part of India. Due to outdoor rearing it became susceptible to viral infection including cytoplasmic polyhedrosis virus (CPV). The common mode of entry of cytoplasmic polyhedrosis virus is per os and cause gresserie disease to the larvae. Histopathological studies elucidated the insect CPV virus produces infective polyhedral inclusion bodies (PIBs) in the midgut cell cytoplasm of virus infected fifth instar larvae. The PIBs multiply enormously in the cytoplasm without invading the nucleus. Ultrastructural studies confirmed the pathological effects of CPV on in midgut cell cytoplasm. The multiplication of polyhedral inclusion bodies took place into the vacuoles and form virogenic stromata in the cytoplasm of cells. However, the encapsulations of polyhedral inclusion bodies into the polyhedrin protein occurred and polyhedra were released into the lumen. At the late stage of infection, cells showed the regressed cytoplasmic organelles with large vacuoles and elongated mitochondria. Hence, the horizontal transmission of CPV causing the midgut cells disintegration in the tasar silkworm, Antheraea mylitta (D) confirmed during infection.