• Title/Summary/Keyword: cell growth yield

Search Result 420, Processing Time 0.056 seconds

Improvement of Porcine Epidemic Diarrhea Disease Vaccine Productivity by Ammonium Ion Removal in a Carberry Type Bioreactor (Carberry Type 생물반응기에서 암모늄 이온 제거에 의한 돼지유행성설사병 바이러스 백신 생산성 증대)

  • Lee, Chang-Jin;Jeong, Yeon-Ho
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.588-593
    • /
    • 2011
  • The porcine epidemic diarrhea virus(PEDV) production yield in spinner flask cultures using Vero cells immobilized on microcarriers was improved by the selective adsorption of ammonium ions in a Carberry type bioreactor which was equipped with Phillipsite-Gismondine synthetic zeolite. Though the apparent cell growth seemed to be lower than that of control due to the aggregation of microcarriers between impeller shaft and the adsorbent, zeolite was found to not to be toxic to Vero cell, considering estimated glucose and lactate changes. Zeolite was observed to remove ammonium ions effectively in both steps of cell growth and virus production. In virus production, the virus titer with zeolite was two times higher than that without zeolite. Consequently, zeolite was found to be an ideal adsorbent for higher production of virus vaccine with the effective removal of ammonium ions.

Expression, Purification, and Biological Characterization of The Amino-Terminal Fragment of Urokinase in Pichia pastoris

  • Li, Jianping;Lin, Yuli;Zhuang, Hongqin;Hua, Zi-Chun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1197-1205
    • /
    • 2013
  • Urokinase (uPA) and its receptor (uPAR) play an important role in tumor growth and metastasis. Targeting the excessive activation of this system as well as the proliferation of the tumor vascular endothelial cell would be expected to prevent tumor neovasculature and halt the tumor development. In this regard, the amino-terminal fragment (ATF) of urokinase has been confirmed as effective to inhibit the proliferation, migration, and invasiveness of cancer cells via interrupting the interaction of uPA and uPAR. Previous studies indicated that ATF expressed in Escherichia coli was mainly contained in inclusion bodies and also lacked posttranslational modifications. In this study, the biologically active and soluble ATF was cloned and expressed in Pichia pastoris. The recombinant protein was purified to be homogenous and confirmed to be biologically active. The yield of the active ATF was about 30 mg/l of the P. pastoris culture medium. The recombinant ATF (rATF) could efficiently inhibit angiogenesis, endothelial cell migration, and tumor cell invasion in vitro. Furthermore, it could inhibit in vivo xenograft tumor growth and prolong the survival of tumor-bearing mice significantly by competing with uPA for binding to cell surfaces. Therefore, P. pastoris is a highly efficient and cost-effective expression system for large-scale production of biologically active rATFs for potential therapeutic application.

Biocatalytic Production of Aldehyde by a Methanol Utilizing Yeast, Hansenula nonfermentans KYP-l Grown in Methanol-limited Continuous Culture

  • Yoon, Byung-Dae;Kim, Hee-Sik;Kwon, Tae-Jong;Yang, Ji-Won;Kwon, Gi-Seok;Lee, Hyun-Sun;Ahn, Jong-Seog;Mheen, Tae-Ick
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.278-283
    • /
    • 1992
  • Aldehyde production by cells of a methanol utilizing yeast, Hansenula nonfermentans KYP-1 was improved when they were grown in a methanol-limited continuous culture, in comparison with cells grown in a batch culture. A higher cell yield was also obtained in continuous culture than in batch culture. This could be due to the fact that a lower methanol concentration was maintained in the jar fermentor to minimize growth inhibition by methanol. A maximum cell productivity of 0.219 g.$liter^{-1}.hr^{-l}$ and a cell yield of 47% were obtained at dilution rates of 0.1 $hr{-1}$ and 0.06 hr{-1}, respectively. The greatest amount of aldehyde was measured at a dilution rate of 0.08 $hr{-1}$. Under optimum reaction conditions, 915.7 mM of acetaldehyde was produced from 1.5 M ethanol after 21 hours reaction, with a conversion rate of 61%. Propionaldehyde and acrolein were produced with conversion rates of 32.7% and 44%, respectively.

  • PDF

Increase of Cell Concentration by the Automatic Addition of Glucose and Ammonium to an Alcohol Distillery Wastewater Reutilized for Cultivating a Baker's Yeast : Automatic Analysis and Control of Ammonium Concentration with an On-line Flow Injection Analysis System (알콜증류폐액을 이용한 빵효모배양에서 Glucose와 Ammonium의 자동첨가에 의한 증균 : 온라인 FIA 시스템에 의한 Ammonium의 자동분석 및 제어)

  • 이형춘
    • KSBB Journal
    • /
    • v.15 no.2
    • /
    • pp.139-144
    • /
    • 2000
  • Automatic addition of glucose and ammonium to an alcohol distille깨 wastewater and the control of them at low $\infty$ncentration were tried to efficiently increase the cell concentration of a baker's yeast c비tivated in that wastewater. Added g glucose was indirectly controlled to less than 116 mg/L by a method which used DO as control parameter. Ammonium was a automatically measured and controlled within the range of 7.0~27.7 mM by a homemade on-line system which adopted FIA a as measurement method. Maximum specific growth rate and biomass yield to glucose were $0.21 hr^{-1}$ and about 0.78 g/g, w which were significantly increased values in contrast to those of an experiment without ammonium control. Biomass yield to a ammonium was 11.3 gIg. Cell cone엉ntration could be increased from 2.6 g/L to 18.5 g/L by the add ion of glucose and a ammonium.

  • PDF

A Study on the Functional Relationship between Biomass Concentration and Fermentation Characteristics in the Culture of High density Cell (고농도 균체 배양에 의한 알콜 발효에서의 균체농도와 발효특성치 사이의 함수관계 규명 -균체농도와 비성장속도, 균체 수율, 알콜 생산성 사이의 함수관계-)

  • 배천순;김범준
    • KSBB Journal
    • /
    • v.7 no.4
    • /
    • pp.247-251
    • /
    • 1992
  • The effect of biomass concentration of Saccharomyces cerevisiae ATCC 24858 on specific growth rates, biomass yields, ethanol yields and productivity in the batch fermentation of rotary shaker was investigated. The specific growth rate decreased according to the increase in the biomass density and finally became zero at a biomass concentration, 55g/L. The ethanol yield $Y_{p/s}$ represented a constant value, 0.43, regardless of the change of biomass concentrations. However, the biomass yield $Y_{x/s}$ showed a trend to diminish in values with augmentation of biomass density and ultimately to reach zero at 55g/L of biomass concentration. The ethanol productivity increased linearly with biomass concentration so that, in case of initial sugar concentration, 170g/L, the productivity for 55g/L of biomass density rose up to 30g/L$\cdot$hr for all the batch fermentations. And also the ethanol concentration inhibiting completely the growth was verified 95g/L by applying experimental data to Luong's equation.

  • PDF

Construction of a Thermotolerant Saccharomyces cerevisiae Strain for Bioethanol Production with Reduced Fermentation Time and Saccharifying Enzyme Dose

  • Lim, Ji Sung;Jang, You Ri;Lim, Young Hoon;Kim, Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1401-1405
    • /
    • 2012
  • A thermotolerant Saccharomyces cerevisiae mutant strain, TT6, was constructed after multi-parental hybridization of five mutant strains obtained by UV or NTG treatment of the original strain, S. cerevisiae KV1. When incubated at $40^{\circ}C$ in YPD broth, TT6 began to grow exponentially in 10 h, but KV1 did not show any noticeable growth even after 22 h. The thermotolerant growth of TT6 was confirmed by serial dilution assay at $42^{\circ}C$; TT6 grew at a cell concentration ($10^{-5}$) 10,000 times lower than that of KV1 ($10^{-1}$). Whereas ethanol production from YP containing 23% (w/v) glucose by KV1 decreased with increasing temperature from $30^{\circ}C$ to $36^{\circ}C$, ethanol production by TT6 did not decrease at temperatures up to $37^{\circ}C$. When TT6 was tested for ethanol production at $36^{\circ}C$ by simultaneous saccharification and fermentation (SSF) from 23% corn, 24 h of fermentation time or 50% of the glucoamylase dose was saved when compared with KV1 at $30^{\circ}C$. The ethanol yield from corn by SSF with TT6 at $36^{\circ}C$ was 91.7% of the theoretical yield, whereas that of KV1 at $30^{\circ}C$ was 90.6%.

Molecular Characterization of Silicon (Si) Transporter Genes, Insights into Si-acquisition Status, Plant Growth, Development, and Yield in Alfalfa

  • Md Atikur Rahman;Sang-Hoon Lee;Yowook Song;Hyung Soo Park;Jae Hoon Woo;Bo Ram Choi;Ki-Won Lee
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.3
    • /
    • pp.168-176
    • /
    • 2023
  • Silicon (Si) has the potential to improve plant growth and stress tolerance. The study aimed to explore Si-involving plant responses and molecular characterization of different Si-responsive genes in alfalfa. In this study, the exogenous supplementation of Si enhanced plant growth, and biomass yield. Si-acquisition in alfalfa root and shoot was higher in Si-supplemented compared to silicon deficient (-Si) plants, implying Si-acquisition has beneficial on alfalfa plants. As a consequence, the quantum efficiency of photosystem II (Fv/Fm) was significantly increased in silicon-sufficient (+Si) plants. The quantitative gene expression analysis exhibited a significant upregulation of the Lsi1, Lsi2, Lsi3, NIP5;1, and NIP6;1 genes in alfalfa roots, while BOR1, BOR4, NIP2, and NIP3 showed no significant variation in their expression. The MEME results further noticed the association of four motifs related to the major intrinsic protein (MIP). The interaction analysis revealed that NIP5;1 and Lsi1 showed a shared gene network with NIP2, BOR1, and BOR4, and Lsi2, Lsi3 and NIP3-1, respectively. These results suggest that members of the major intrinsic proteins (MIPs) family especially Lsi1, Lsi2, Lsi3, NIP5;1, and NIP6;1 genes helped to pass water and other neutral solutes through the cell membrane and those played significant roles in Si uptake and transport in plants. Together, these insights might be useful for alfalfa breeding and genome editing approaches for alfalfa improvement.

Nitrate enhances the secondary growth of storage roots in Panax ginseng

  • Kyoung Rok Geem ;Jaewook Kim ;Wonsil Bae ;Moo-Geun Jee ;Jin Yu ;Inbae Jang;Dong-Yun Lee ;Chang Pyo Hong ;Donghwan Shim;Hojin Ryu
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.469-478
    • /
    • 2023
  • Background: Nitrogen (N) is an essential macronutrient for plant growth and development. To support agricultural production and enhance crop yield, two major N sources, nitrate and ammonium, are applied as fertilizers to the soil. Although many studies have been conducted on N uptake and signal transduction, the molecular genetic mechanisms of N-mediated physiological roles, such as the secondary growth of storage roots, remain largely unknown. Methods: One-year-old P. ginseng seedlings treated with KNO3 were analyzed for the secondary growth of storage roots. The histological paraffin sections were subjected to bright and polarized light microscopic analysis. Genome-wide RNA-seq and network analysis were carried out to dissect the molecular mechanism of nitrate-mediated promotion of ginseng storage root thickening. Results: Here, we report the positive effects of nitrate on storage root secondary growth in Panax ginseng. Exogenous nitrate supply to ginseng seedlings significantly increased the root secondary growth. Histological analysis indicated that the enhancement of root secondary growth could be attributed to the increase in cambium stem cell activity and the subsequent differentiation of cambium-derived storage parenchymal cells. RNA-seq and gene set enrichment analysis (GSEA) revealed that the formation of a transcriptional network comprising auxin, brassinosteroid (BR)-, ethylene-, and jasmonic acid (JA)-related genes mainly contributed to the secondary growth of ginseng storage roots. In addition, increased proliferation of cambium stem cells by a N-rich source inhibited the accumulation of starch granules in storage parenchymal cells. Conclusion: Thus, through the integration of bioinformatic and histological tissue analyses, we demonstrate that nitrate assimilation and signaling pathways are integrated into key biological processes that promote the secondary growth of P. ginseng storage roots.

Effect of ultrasonification on immuno-stimulatory activities of the extracts from Korean medicinal herbs

  • Park, Jin-Hong;Lee, Hyun-Soo;Mun, Chul-Hyung;Kim, Dae-Ho;Lee, Hyeon-Yong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.195-199
    • /
    • 2003
  • The effect of ultrasonification on immune-stimulatory activities of extracts Acanthopanax senticosus Harms, Ephedra sinica Stapf, Rubus coreanus Miq and Artemisia capillaris Thunb was observed by the growth of human immune cells. The extracts yield make a comparative study of water extracts and water extract with ultrasonification at $40^{\circ}C,$ $60^{\circ}C$ and $100^{\circ}C$. The yield is highest in the water extracts with ultrasonification at $60^{\circ}C$ The growth of human T-cell was increased up to $13.8{\times}10^{-4}$ viable cells/ml in adding ultrasonification extracts. The treated extracts increased up to $10.5{\times}10^{-4}$ pg/cells that TNF-${\alpha}$ specific secretion of human T-cell. These results suggested that biological activities of water extracts with ultrasonification have more strong than water extracts in human immune system.

  • PDF

Seedling Quality, and Early Growth and Fruit Productivity after Transplanting of Squash as Affected by Plug Cell Size and Seedling Raising Period (플러그 셀 크기와 육묘일수에 따른 애호박의 묘 소질, 정식 후 초기 생육 및 과실 생산성)

  • Kim, Yeong Sook;Park, Yoo Gyeong;Jeong, Byoung Ryong
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.185-196
    • /
    • 2019
  • Abstract. This research was conducted to figure out the optimal size of the plug cell and seedling raising period in 'Nongwoo' and 'Nonghyeop' cultivars. In the first experiment on effect of plug cell size on growth of squash, seedlings were transplanted into hydroponic cultivation beds at different growing stages: Those in 32-cell trays with 3-4 true leaves at 25 days after sowing, those in 50-cell trays with 2 true leaves at 15 days after sowing, those in 105-cell trays just before a true leaf development, and those in 162-cell trays with only cotyledons at 8 days after sowing. In the second experiment on effect of seedling raising period on growth of squash, it was conducted to have different sowing dates. But the same transplanting date, based on the results of Experiment 1, and compared the differences in growth and fruit productivity as affected by plug cell size in the same way with experiment 1 including the cultivars and environmental conditions. After setting the transplanting date in advance, the number of days for sowing were calculated back for each treatment. In the first experiment, plant height was the greatest in 105-cell trays followed by 162, 50 and 32-cell trays in both cultivars. The best fruit quality was found in different treatments depending on the cultivars, although it was the lowest in 32-cell trays in both cultivars. The fruit quality was not significantly different among those from cell sizes. Therefore, when raising seedlings in 105-cell trays, the period of raising seedlings can be shortened as compared with the conventional 32-cell trays, and this change could reduce the workforce required for growing and transplanting seedlings. In the second experiment, after transplanting, shoot height and leaf width in the first measurement in both cultivars were greater in the 32-cell treatment. However, the last measurement after four weeks showed no significant difference in plant height, but significantly greatest leaf width in the smallest cell treatment, even as compared with that in 32-cell treatment. In case of 'Nongwoo', length and weight of the first harvested fruit showed the highest values in the treatment of 105-cell trays. In case of 'Nonghyeop' the 162-cell treatment along with the 105-cell treatment showed greatest length and weight of the first fruits. From these results, zucchini plug seedlings can be raised in plug trays with reduced cell sizes than the conventional 32-cell trays with improved fruit productivity.