• Title/Summary/Keyword: cell growth Saccharomyces cerevisiae

Search Result 154, Processing Time 0.031 seconds

Heat Shock Causes Oxidative Stress and Induces a Variety of Cell Rescue Proteins in Saccharomyces cerevisiae KNU5377

  • Kim, Il-Sup;Moon, Hye-Youn;Yun, Hae-Sun;Jin, Ing-Nyol
    • Journal of Microbiology
    • /
    • v.44 no.5
    • /
    • pp.492-501
    • /
    • 2006
  • In this study, we attempted to characterize the physiological response to oxidative stress by heat shock in Saccharomyces cerevisiae KNU5377 (KNU5377) that ferments at a temperature of $40^{\circ}C$. The KNU5377 strain evidenced a very similar growth rate at $40^{\circ}C$ as was recorded under normal conditions. Unlike the laboratory strains of S. cerevisiae, the cell viability of KNU5377 was affected slightly under 2 hours of heat stress conditions at $43^{\circ}C$. KNU5377 evidenced a time-dependent increase in hydroperoxide levels, carbonyl contents, and malondialdehyde (MDA), which increased in the expression of a variety of cell rescue proteins containing Hsp104p, Ssap, Hsp30p, Sod1p, catalase, glutathione reductase, G6PDH, thioredoxin, thioredoxin peroxidase (Tsa1p), Adhp, Aldp, trehalose and glycogen at high temperature. Pma1/2p, Hsp90p and $H^+$-ATPase expression levels were reduced as the result of exposure to heat shock. With regard to cellular fatty acid composition, levels of unsaturated fatty acids (USFAs) were increased significantly at high temperatures ($43^{\circ}C$), and this was particularly true of oleic acid (C18:1). The results of this study indicated that oxidative stress as the result of heat shock may induce a more profound stimulation of trehalose, antioxidant enzymes, and heat shock proteins, as well as an increase in the USFAs ratios. This might contribute to cellular protective functions for the maintenance of cellular homeostasis, and may also contribute to membrane fluidity.

Construction of a Thermotolerant Saccharomyces cerevisiae Strain for Bioethanol Production with Reduced Fermentation Time and Saccharifying Enzyme Dose

  • Lim, Ji Sung;Jang, You Ri;Lim, Young Hoon;Kim, Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1401-1405
    • /
    • 2012
  • A thermotolerant Saccharomyces cerevisiae mutant strain, TT6, was constructed after multi-parental hybridization of five mutant strains obtained by UV or NTG treatment of the original strain, S. cerevisiae KV1. When incubated at $40^{\circ}C$ in YPD broth, TT6 began to grow exponentially in 10 h, but KV1 did not show any noticeable growth even after 22 h. The thermotolerant growth of TT6 was confirmed by serial dilution assay at $42^{\circ}C$; TT6 grew at a cell concentration ($10^{-5}$) 10,000 times lower than that of KV1 ($10^{-1}$). Whereas ethanol production from YP containing 23% (w/v) glucose by KV1 decreased with increasing temperature from $30^{\circ}C$ to $36^{\circ}C$, ethanol production by TT6 did not decrease at temperatures up to $37^{\circ}C$. When TT6 was tested for ethanol production at $36^{\circ}C$ by simultaneous saccharification and fermentation (SSF) from 23% corn, 24 h of fermentation time or 50% of the glucoamylase dose was saved when compared with KV1 at $30^{\circ}C$. The ethanol yield from corn by SSF with TT6 at $36^{\circ}C$ was 91.7% of the theoretical yield, whereas that of KV1 at $30^{\circ}C$ was 90.6%.

Effect of Galactose and Dextrose on Human Lipocortin I Expression in Recombinant Saccharomyces cerevisiae Carrying Galactose-Regulated Expression System

  • Nam, Soo-Wan;Seo, Dong-Jin;Rhee, Sang-Ki;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.3
    • /
    • pp.168-173
    • /
    • 1993
  • The expression kinetics of human lipocortin I (LCI), a potential anti-inflammatory agent, was studied in the shake-flask and fermenter cultures of Saccharomyces cerevisiae carrying a galactose-inducible expression system. The cell growth, expression level of LCI, and the plasmid stability were investigted under various galactose induction conditions. The expression of LCI was repressed by the presence of a very small amount of dextrose in the culture medium, but it was induced by galactose after dextrose became completely depleted. The optimal ratio of dextrose to galactose for lipocortin I production was found to be 1.0 (10 g/l dextrose and 10 g/l galactose). With optimal D/G ratio of 1.0 and the addition of galactose prior to dextrose depletion, LCI of about 100~130 mg/l was produced. LCI at a concentration of 174 mg/l was porduced in the fed-batch culture, which was nearly a twice as much of that produced in the batch culture. The plasmid stability was very high in all culture cases, and thus was considered to be not an important parameter in the expression of LCI.

  • PDF

Immune Enhancing Effect by Orally-Administered Mixture of Saccharomyces cerevisiae and Fermented Rice Bran

  • KOH, JONG HO;JIN MAN KIM;HYUNG JOO SUH
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.196-201
    • /
    • 2003
  • The mixture (PM) of Saccharomyces cerevisiae and fermented rice bran on the activation of macrophage and bone marrow cell proliferation was studied in mice. PM stimulated not only the activation of macrophage (1.8-fold of saline) but also IL-6 production from macrophage (1.5-fold) at 2.0 g/㎏/day during 7 days of oral administration. By the culture supernatant of Peyer's patch cells from C3H/HeJ mice fed PM at 2.0 g/㎏/day for 7 days, the bone marrow cells significantly proliferated compared with that of mice receiving only saline (1.7-fold). In addition, the contents of GM-CSF and IL-6 in the culture supernatant of Peyer's patch cells from mice fed PM at 2.0 g/㎏/day were increased in comparison with those from the control (1.8 and 1.4-fold, respectively). These results revealed that oral administration of PM may modulate IL-6 production to induce the activation of macrophage, and also enhance secretion of hematopoietic growth factors such as GM-CSF and IL-6 from Peyer's patch cells.

Effect of Galactose Feeding Strategy on Heterologous Human Lipocortin-I Production in the Fed-Batch Culture of Saccharomyces cerevisiae Controlled by the GAL10 Promoter

  • Chung, Bong-Hyun;Kim, Byung-Moon;Rhee, Sang-Ki;Park, Young-Hoon;Nam, Soo-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.224-228
    • /
    • 1995
  • Fed-batch fermentations were conducted to produce human lipocortin-I (LC1), a potential anti-inflammatory agent, from recombinant Sacchromyces cerevisiae carrying a galactose-inducible expression system. The cell growth, expression level of LC1, and the plasmid stability were investigated under various LC1 induction modes performed by three different galactose feeding strategies. Galactoe was fed to induce the expression of LCl from the beginning (initial induction) of culture or when the cell concentration reached 120 OD (mid-phase induction) or 300 OD (late induction). Among the three galactose-induction modes tested, the initial induction mode yielded the best result with respect to a final expression level of LC1. Fedbatch fermentation with initial induction mode produced LC1 at a conentration of 220 mg/l, which corresponded to 1.38- and 1.53-fold increases over those produced by mid-phase and late induction modes.

  • PDF

Screening of Biogenic Amine Non-Producing Yeast and Optimization of Culture Conditions Using Statistical Method for Manufacturing Black Raspberry Wine (복분자 와인 제조를 위한 바이오제닉 아민 비생성 효모의 선별 및 통계학적 기법을 이용한 배양조건 최적화)

  • Yang, Hee-Jong;Jeong, Su-Ji;Jeong, Seong-Yeop;Heo, Ju-Hee;Jeong, Do-Youn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.4
    • /
    • pp.592-601
    • /
    • 2015
  • Rubus coreanus is known as Korean black raspberry, native to Korea, Japan, and China. Preliminary studies evaluating their potential for cancer treatment in mammalian test systems are ongoing. In recent years, interest has been renewed due to their high levels of anthocyanins. Anthocyanins in black raspberry are important due to their potential health benefits as dietary antioxidant, anti-inflammatory compound, and as a chemopreventive agent. In the present study, Saccharomyces cerevisiae BA29 was isolated from black raspberry fruit and fruit juice as a biogenic amine non-producing strain for manufacturing of black raspberry wine, after which we investigated its characteristics: biogenic amine-producing ability, cell growth ability, alcohol-fermentation ability, and resistance to alcohol, glucose, and sulfur dioxide. Based on preliminary experiments, we optimized culture medium compositions for improving dried cell weight of S. cerevisiae BA29 by response surface methodology (RSM) as a statistical method. Design for RSM used a central composite design, and molasses with the industrial applicability was used as a carbon source. Through statistical analysis, we obtained optimum values as follows: molasses 200 g/L, peptone 30 g/L, and yeast extract 40 g/L. For the model verification, we confirmed about 3-fold improvement of dried cell weight from 6.39 to 20.9167 g/L compared to basal yeast peptone dextrose medium. Finally, we manufactured black raspberry wine using S. cerevisiae BA29 and produced alcohol of 20.33%. In conclusion, S. cerevisiae isolated from black raspberry fruit and juices has a great potential in the fermentation of black raspberry wine.

Response of Saccharomyces cerevisiae to Ethanol Stress Involves Actions of Protein Asr1p

  • Ding, Junmei;Huang, Xiaowei;Zhao, Na;Gao, Feng;Lu, Qian;Zhang, Ke-Qin
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1630-1636
    • /
    • 2010
  • During the fermentation process of Saccharomyces cerevisiae, yeast cells must rapidly respond to a wide variety of external stresses in order to survive the constantly changing environment, including ethanol stress. The accumulation of ethanol can severely inhibit cell growth activity and productivity. Thus, the response to changing ethanol concentrations is one of the most important stress reactions in S. cerevisiae and worthy of thorough investigation. Therefore, this study examined the relationship between ethanol tolerance in S. cerevisiae and a unique protein called alcohol sensitive RING/PHD finger 1 protein (Asr1p). A real-time PCR showed that upon exposure to 8% ethanol, the expression of Asr1 was continuously enhanced, reaching a peak 2 h after stimulation. This result was confirmed by monitoring the fluorescence levels using a strain with a green fluorescent protein tagged to the C-terminal of Asr1p. The fluorescent microscopy also revealed a change in the subcellular localization before and after stimulation. Furthermore, the disruption of the Asr1 gene resulted in hypersensitivity on the medium containing ethanol, when compared with the wild-type strain. Thus, when taken together, the present results suggest that Asr1 is involved in the response to ethanol stress in the yeast S. cerevisiae.

Breeding of Ethanol-producing and Ethanol-tolerant Saccharomyces cerevisiae using Genome Shuffling (Genome shuffling을 이용한 에탄올 생산 및 내성 효모 균주의 육종)

  • Park, A-Hwang;Kim, Yeon-Hee
    • Journal of Life Science
    • /
    • v.23 no.10
    • /
    • pp.1192-1198
    • /
    • 2013
  • To improve yeast strains for bioethanol production, yeasts with ethanol tolerance, thermotolerance, and ${\beta}$-1,3-glucanase activity were bred using yeast genome shuffling. Saccharomyces cerevisiae $BY4742{\Delta}exg1$/pAInu-exgA, which has extracellular ${\beta}$-1,3-glucanase activity, and the Aspergillus oryzae and S. cerevisiae YKY020 strains, which exhibit ethanol tolerance and thermotolerance, were fused by yeast protoplast fusion. Following cell fusion, four candidate cells (No. 3, 9, 11, and 12 strains) showing thermotolerance at $40^{\circ}C$ were selected, and their ethanol tolerance (7% ethanol concentration) and ${\beta}$-1,3-glucanase activity were subsequently analyzed. All the phenotypes of the two parent cells were simultaneously expressed in one (No. 11) of the four candidate cells, and this strain was called BYK-F11. The BYK-F11 fused cell showed enhanced cell growth, ethanol tolerance, ${\beta}$-1,3-glucanase activity, and ethanol productivity compared with the $BY4742{\Delta}exg1$/pAInu-exgA and YKY020 strains. The results prove that a new yeast strain with different characters and the same mating type can be easily bred by protoplast fusion of yeasts.

Efficient assay for respiration inhibitor using Saccharomyces cerevisiae (Saccharomyces cerevisiae를 이용한 효율적인 호흡저해제 검정법)

  • Choi, Gyung-Ja;Kim, Jin-Cheol;Kim, Heung-Tae;Cho, Kwang-Yun
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.3
    • /
    • pp.52-59
    • /
    • 2000
  • A rapid assay to determine respiration inhibition of Saccharomyces cerevisiae by chemicals was developed. S. cerevisiae was harvested with two different liquid media, yeast extract-peptone-dextrose (YPD) medium capable of occurring both glucose fermentation and mitochondrial respiration, and non-fermentable carbon-yeast extract (NFY) medium capable of occurring respiration only Wells in 96-well plate were loaded with each cell suspension and various concentrations of 46 fungicides with various modes of action. n NFY medium, the non-fermentable carbon source, ethanol (NFY-E medium), glycerol (NFY-G medium) or lactate (NFY-L medium), was used. After incubation for $1{\sim}3$ days, minimum inhibitory concentrations (MICs) of the chemicals were recorded in the media. Of the 46 inhibitors employed in this study, four inhibitors of fungal respiration by blockage of electron flux in the mitochondrial respiratory chain, azoxystrobin, kresoxim-methyl, metominostrobin, and trifloxystrobin, exhibited strong antifungal activity in all of NFY media, but no activity in YPD medium. In contrast to this, five N-trihalomethylthio fungicides showed much stronger antifungal activities in YPD medium than three NFY media. Eleven fungicides inhibited growth of S. cerevisiae in all media and the other 26 fungicides showed no antifungal activity in all media. Thus, our rapid and efficient in vitro method can be considered as an alternative assay system for respiration inhibitor.

  • PDF

Nutritional Value of Candida utitis for Rotifer and Larval Flounder Paralichthys olivaceus

  • Kim Hae Young;Kim Joong Kyun;Park Kyong-Joo;Bae Jean Hee;Hur Sung Bum
    • Fisheries and Aquatic Sciences
    • /
    • v.8 no.4
    • /
    • pp.235-242
    • /
    • 2005
  • Baker's yeast, Saccharomyces cerevisiae, has been widely used as a food organism for rotifers used in the larval production of marine fish. However, the nutritional value of the yeast is relatively poor compared with that of the marine alga Chlorella. We examined the nutritional value of another yeast, Candida utilis, and whether its food value could be increased through manipulation such as a cell wall treatment. Candida utilis and S. cerevisiae and their manipulated varieties were assessed with regard to the growth and nutrition of the rotifer Brachianus plicatilis. Larvae of the flounder Paralichthys alivaceus were cultured with rotifers fed on the yeast species, and the dietary value of the rotifers for the larvae was examined. Rotifers that were fed C. utilis grew faster than those provided with S. cerevisiae. Rotifers grew slightly faster on manipulated yeast than on non-manipulated yeast varieties. Of the two yeast species, C. utilis had better dietary value for rotifers. Flounder larvae cultured with rotifers that had fed on C. utilis displayed better growth and survival ($\%$) than did those cultured with rotifers that had fed on S. cerevisiae. Although the manipulated variety of C. utilis was better than the non-manipulated variety in terms of rotifer growth, the flounder larvae survived ($\%$) and grew better when they were fed rotifers that had eaten non-manipulated C. utilis. However, the nutritional value of this yeast species was still lower than that of Chlorella.