• 제목/요약/키워드: cell growth, motility

검색결과 75건 처리시간 0.026초

Disruption of the metC Gene Affects Methionine Biosynthesis in Pectobacterium carotovorum subsp. carotovorum Pcc21 and Reduces Soft-Rot Disease

  • Seonmi, Yu;Jihee, Kang;Eui-Hwan, Chung;Yunho, Lee
    • The Plant Pathology Journal
    • /
    • 제39권1호
    • /
    • pp.62-74
    • /
    • 2023
  • Plant pathogenic Pectobacterium species cause severe soft rot/blackleg diseases in many economically important crops worldwide. Pectobacterium utilizes plant cell wall degrading enzymes (PCWDEs) as the main virulence determinants for its pathogenicity. In this study, we screened a random mutant, M29 is a transposon insertion mutation in the metC gene encoding cystathionine β-lyase that catalyzes cystathionine to homocysteine at the penultimate step in methionine biosynthesis. M29 became a methionine auxotroph and resulted in growth defects in methionine-limited conditions. Impaired growth was restored with exogenous methionine or homocysteine rather than cystathionine. The mutant exhibited reduced soft rot symptoms in Chinese cabbages and potato tubers, maintaining activities of PCWDEs and swimming motility. The mutant was unable to proliferate in both Chinese cabbages and potato tubers. The reduced virulence was partially restored by a complemented strain or 100 µM of methionine, whereas it was fully restored by the extremely high concentration (1 mM). Our transcriptomic analysis showed that genes involved in methionine biosynthesis or transporter were downregulated in the mutant. Our results demonstrate that MetC is important for methionine biosynthesis and transporter and influences its virulence through Pcc21 multiplication in plant hosts.

Trichomonas vaginalis Metalloproteinase Induces mTOR Cleavage of SiHa Cells

  • Quan, Juan-Hua;Choi, In-Wook;Yang, Jung-Bo;Zhou, Wei;Cha, Guang-Ho;Zhou, Yu;Ryu, Jae-Sook;Lee, Young-Ha
    • Parasites, Hosts and Diseases
    • /
    • 제52권6호
    • /
    • pp.595-603
    • /
    • 2014
  • Trichomonas vaginalis secretes a number of proteases which are suspected to be the cause of pathogenesis; however, little is understood how they manipulate host cells. The mammalian target of rapamycin (mTOR) regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. We detected various types of metalloproteinases including GP63 protein from T. vaginalis trophozoites, and T. vaginalis GP63 metalloproteinase was confirmed by sequencing and western blot. When SiHa cells were stimulated with live T. vaginalis, T. vaginalis excretory-secretory products (ESP) or T. vaginalis lysate, live T. vaginalis and T. vaginalis ESP induced the mTOR cleavage in both time-and parasite load-dependent manner, but T. vaginalis lysate did not. Pretreatment of T. vaginalis with a metalloproteinase inhibitor, 1,10-phenanthroline, completely disappeared the mTOR cleavage in SiHa cells. Collectively, T. vaginalis metallopeptidase induces host cell mTOR cleavage, which may be related to survival of the parasite.

Nicotinamide N-methyltransferase induces the proliferation and invasion of squamous cell carcinoma cells

  • YOUNG‑SOOL HAH;HEE YOUNG CHO;SUN YOUNG JO;YOUNG SOOK PARK;EUN PHIL HEO;TAE‑JIN YOON
    • Oncology Letters
    • /
    • 제42권5호
    • /
    • pp.1805-1814
    • /
    • 2019
  • Cutaneous squamous cell carcinoma (cSCC) is a common malignancy initiated by keratinocytes of the epidermis, which are able to invade the dermis and its periphery. Although most patients with cSCC present with curable localized tumors, recurrence, metastasis and mortality occasionally occur. In the present study, nicotinamide N-methyltransferase (NNMT) was identified as an upregulated protein in the SCC12 cell line, which has high invasive potential compared with the SCC13 cell line. The effects of NNMT knockdown on proliferation, migration and invasion were investigated using SCC cells. shRNA-mediated downregulation of NNMT expression levels inhibited the proliferation and density-dependent growth of SCC12 cells. In addition, the results of a cell motility assay showed that the migration and invasion of SCC cells were markedly decreased in NNMT-knockdown cells. The assessment of epithelial-mesenchymal transition (EMT)-associated gene expression using PCR array analysis revealed that high NNMT expression levels were accompanied by high expression levels of EMT-associated genes, and that NNMT knockdown effectively suppressed the expression of matrix metalloproteinase 9, osteopontin, versican core protein and zinc finger protein SNAI2 in SCC12 cells. These results revealed that the upregulation of NNMT induced cellular invasion via EMT-related gene expression in SCC cells.

인체유방암세포의 tight junction 기능 조절을 통한 genistein의 암세포 침윤 억제 효과 (Anti-invasive Activity of Human Breast Carcinoma Cells by Genistein through Modulation of Tight Junction Function)

  • 김성옥;정영기;최영현
    • 생명과학회지
    • /
    • 제19권9호
    • /
    • pp.1200-1208
    • /
    • 2009
  • Tight junctions (TJs)은 인접된 세포 사이의 전해질 및 거대분자 확산 조절에 관여하는 paracellular permeability의 장벽 역할을 한다. 본 연구에서는 MCF-7 및 MDA-MB-231 인체유방암세포에서 대두의 대표적인 생리활성물인 genistein에 의한 암세포의 침윤 억제에서 TJs의 견고성 및 투과성과의 연관성을 조사하였다. 본 연구의 결과에 의하면 genistein에 의한 유방암세포의 증식 억제, 암세포 이동성의 저하 및 침윤성의 억제는 TJs의 증가된 견고성과 연관이 있었으며, 이를 transepithelial electrical resistance의 증가 및 paracellular permeability의 감소로 확인하였다. Genistein은 두 유방암세포에서 TJs의 주요 조절 단백질로서 paracellular transport 조절에 중요한 역할을 하는 claudin-3 및 claudin-4의 발현을 억제시켰다. 그리고 genistein은 암세포의 전이 조절 관련 유전자들인 like growth factor-1 receptor 및 snail의 발현을 억제하였으며, thrombospondin-1 및 E-cadherin의 발현은 증가시켰다. 또한 small interfering RNA를 이용하여 genistein의 유방암세포의 침윤 억제에서 claudin-3단백질의 중요성을 확인하였다. 결론적으로 genistein이 TJs의 견고성 증가를 통하여 암세포의 침윤성을 억제할 수 있었으며, 이 과정에서 아마도 claudin 단백질의 발현 증가가 중요한 역할을 하고 있음을 알 수 있었다. 본 연구의 결과는 genistein이 종양 전이억제를 효과적으로 차단할 수 있음을 보여주는 것이다.

L-arginine and N-carbamoylglutamic acid supplementation enhance young rabbit growth and immunity by regulating intestinal microbial community

  • Sun, Xiaoming;Shen, Jinglin;Liu, Chang;Li, Sheng;Peng, Yanxia;Chen, Chengzhen;Yuan, Bao;Gao, Yan;Meng, Xianmei;Jiang, Hao;Zhang, Jiabao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권1호
    • /
    • pp.166-176
    • /
    • 2020
  • Objective: An experiment was conducted to determine the effects of L-arginine (L-Arg) and N-carbamoylglutamic acid (NCG) on the growth, metabolism, immunity and community of cecal bacterial flora of weanling and young rabbits. Methods: Eighteen normal-grade male weanling Japanese White rabbits (JWR) were selected and randomly divided into 6 groups with or without L-Arg and NCG supplementation. The whole feeding process was divided into weanling stage (day 37 to 65) and young stage (day 66 to 85). The effects of L-Arg and NCG on the growth, metabolism, immunity and development of the ileum and jejunum were compared via nutrient metabolism experiments and histological assessment. The different communities of cecal bacterial flora affected by L-Arg and NCG were assessed using high-throughput sequencing technology and bioinformatics analysis. Results: The addition of L-Arg and NCG enhanced the growth of weanling and young rabbit by increasing the nitrogen metabolism, protein efficiency ratio, and biological value, as well as feed intake and daily weight gain. Both L-Arg and NCG increased the concentration of immunoglobulin A (IgA), IgM, and IgG. NCG was superior to L-Arg in promoting intestinal villus development by increasing villus height, villus height/crypt depth index, and reducing the crypt depth. The effects of L-Arg and NCG on the cecal bacterial flora were mainly concentrated in different genera, including Parabacteroides, Roseburia, dgA-11_gut_group, Alistipes, Bacteroides, and Ruminococcaceae_UCG-005. These bacteria function mainly in amino acid transport and metabolism, energy production and conversion, lipid transport and metabolism, recombination and repair, cell cycle control, cell division, and cell motility. Conclusion: L-Arg and NCG can promote the growth and immunity of weanling and young JWR, as well as effecting the jejunum and ileum villi. L-Arg and NCG have different effects in the promotion of nutrient utilization, relieving inflammation and enhancing adaptability through regulating microbial community.

Anti-metastasis Activity of Black Rice Anthocyanins Against Breast Cancer: Analyses Using an ErbB2 Positive Breast Cancer Cell Line and Tumoral Xenograft Model

  • Luo, Li-Ping;Han, Bin;Yu, Xiao-Ping;Chen, Xiang-Yan;Zhou, Jie;Chen, Wei;Zhu, Yan-Feng;Peng, Xiao-Li;Zou, Qiang;Li, Sui-Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권15호
    • /
    • pp.6219-6225
    • /
    • 2014
  • Background: Increasing evidence from animal, epidemiological and clinical investigations suggest that dietary anthocyanins have potential to prevent chronic diseases, including cancers. It is also noteworthy that human epidermal growth factor receptor 2 (ErbB2) protein overexpression or ErbB2 gene amplification has been included as an indicator for metastasis and higher risk of recurrence for breast cancer. Materials and Methods: The present experiments investigated the anti-metastasis effects of black rice anthocyanins (BRACs) on ErbB2 positive breast cancer cells in vivo and in vitro. Results: Oral administration of BRACs (150 mg/kg/day) reduced transplanted tumor growth, inhibited pulmonary metastasis, and decreased lung tumor nodules in BALB/c nude mice bearing ErbB2 positive breast cancer cell MDA-MB-453 xenografts. The capacity for migration, adhesion, motility and invasion was also inhibited by BRACs in MDA-MB-453 cells in a concentration dependent manner, accompanied by decreased activity of a transfer promoting factor, urokinase-type plasminogen activator (u-PA). Conclusions: Together, our results indicated that BRACs possess anti-metastasis potential against ErbB2 positive human breast cancer cells in vivo and in vitro through inhibition of metastasis promoting molecules.

Knockdown of Radixin by RNA interference Suppresses the Growth of Human Pancreatic Cancer Cells in Vitro and in Vivo

  • Chen, Shu-Dong;Song, Mao-Min;Zhong, Zhi-Qiang;Li, Na;Wang, Pi-Lin;Cheng, Shi;Bai, Ri-Xing;Yuan, Hui-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권3호
    • /
    • pp.753-759
    • /
    • 2012
  • Radixin, encoded by a gene on chromosome 11, plays important roles in cell motility, invasion and tumor progression. However, its function in pancreatic cancer remains elusive. In this study, radixin gene expression was suppressed with a lentivirus-mediated short-hairpin RNA (shRNA) method. We found that radixin shRNA caused down-regulation of radixin in PANC-1 cells, associated with inhibition of pancreatic cancer cell proliferation, survival, adhesion and invasive potential in vitro. When radixin-silenced cells were implanted in nude mice, tumor growth and microvessel density were significantly inhibited as compared to blank control cells or nonsense shRNA control cells. Thrombospondin-1 (TSP-1) and E-cadherin were up-regulated in radixin-silenced PANC-1 cells. Our results suggest that radixin might play a critical role in pancreatic cancer progression, possibly through invvolvement of down-regulation of TSP-1 and E-cadherin expression.

Effect of Glycosaminoglycans on In vitro Fertilizing Ability and In vitro Developmental Potential of Bovine Embryos

  • Kim, Eun Young;Noh, Eun Hyung;Noh, Eun Ji;Park, Min Jee;Park, Hyo Young;Lee, Dong Sun;Riu, Key Zung;Park, Se Pill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권2호
    • /
    • pp.178-188
    • /
    • 2013
  • The glycosaminoglycans (GAGs) present in the female reproductive tract promote sperm capacitation. When bovine sperm were exposed to 10 ${\mu}g/ml$ of one of four GAGs (Chondroitin sulfate, CS; Dermatan sulfate, DS; Hyaluronic acid, HA; Heparin, HP) for 5 h, the total motility (TM), straight-line velocity (VSL), and curvilinear velocity (VCL) were higher in the HP- or HA-treated sperm, relative to control and CS- or DS-treated sperm. HP and HA treatments increased the levels of capacitated and acrosome-reacted sperm over time, compared to other treatment groups (p<0.05). In addition, sperm exposed to HP or HA for 1 h before IVF exhibited significantly improved fertilizing ability, as assessed by 2 pronucleus (PN) formation and cleavage rates at d 2. Exposure to these GAGs also enhanced in vitro embryo development rates and embryo quality, and increased the ICM and total blastocyst cell numbers at d 8 after IVF (p<0.05). A real-time PCR analysis showed that the expression levels of pluripotency (Oct 4), cell growth (Glut 5), and anti-apoptosis (Bax inhibitor) genes were significantly higher in embryos derived from HA- or HP-treated sperm than in control or other treatment groups, while pro-apoptotic gene expression (caspase-3) was significantly lower in all GAG treatment groups (p<0.05). These results demonstrated that exposure of bovine sperm to HP or HA positively correlates with in vitro fertilizing ability, in vitro embryo developmental potential, and embryonic gene expression.

Proteomic and Phenotypic Analyses of a Putative YggS Family Pyridoxal Phosphate-Dependent Enzyme in Acidovorax citrulli

  • Lynn Heo;Yongmin Cho;Junhyeok Choi;Jeongwook Lee;Yoobin Han;Sang-Wook Han
    • The Plant Pathology Journal
    • /
    • 제39권3호
    • /
    • pp.235-244
    • /
    • 2023
  • Acidovorax citrulli (Ac) is a phytopathogenic bacterium that causes bacterial fruit blotch (BFB) in cucurbit crops, including watermelon. However, there are no effective methods to control this disease. YggS family pyridoxal phosphate-dependent enzyme acts as a coenzyme in all transamination reactions, but its function in Ac is poorly understood. Therefore, this study uses proteomic and phenotypic analyses to characterize the functions. The Ac strain lacking the YggS family pyridoxal phosphate-dependent enzyme, AcΔyppAc(EV), virulence was wholly eradicated in geminated seed inoculation and leaf infiltration. AcΔyppAc(EV) propagation was inhibited when exposed to L-homoserine but not pyridoxine. Wild-type and mutant growth were comparable in the liquid media but not in the solid media in the minimal condition. The comparative proteomic analysis revealed that YppAc is primarily involved in cell motility and wall/membrane/envelop biogenesis. In addition, AcΔyppAc(EV) reduced biofilm formation and twitching halo production, indicating that YppAc is involved in various cellular mechanisms and possesses pleiotropic effects. Therefore, this identified protein is a potential target for developing an efficient anti-virulence reagent to control BFB.

한국의 토양으로부터 내열성 단백질 분해효소를 생산하는 Bacillus sp. JE 375의 선별 (A Thermostable Protease Produced from Bacillus sp. JE 375 Isolated from Korean Soil)

  • 김지은;배동훈
    • 한국식품과학회지
    • /
    • 제38권3호
    • /
    • pp.419-426
    • /
    • 2006
  • 전국 각지에서 채집한 토양에서 분리한 25종의 내열성 균주 중 내열성 단백질 기수분해효소 활성을 갖는 균주 strain JE 375를 선별하였다. 본 균주는 gram 양성 간균의 특징을 나타냈으며 Bergey's Manual of Systematic Bacteriology와 Biochemical Tests for Identification of Medical Bacteria에 준하여 생화학적 특성을 검토한 결과 catalase 양성, 포자형성, motility 양성, glucose 발효, mannitol 발효, xylose 산화, hemolysis ${\beta}$균임을 보아 Bacillus sp.으로 추정 되었다. Strain JE 375의 whole cell fatty acid를 gas chromatography로 분석한 결과 $C_{15:0}$ iso 26.17%, $C_{16:0}$ iso 13.01%, $C_{17:0}$ iso 30.19%로 분석되어 Bacillus 계열로 동정되었다. 16S rDNA sequence분석 결과 strain JE 375는 Bacillus caldoxylolyticus와 sequence가 97.6% 일치하는 유사성을 보였으나 부분적으로 sequence의 차이가 있고 gene bank data base상에서 16S rDNA sequence가 일치하는 균주는 검색되지 않았다. 이 같은 실험 결과에 따라 strain JE 375는 기존에 발표되지 않은 새로운 균주로 판단되어 Bacillus sp. JE 375로 명명하였다. Bacillus sp. JE 375은 tryptone 1%, yeast extract 0.5%, NaCl 1%, maltose 1%의 배지조성분과 배양 온도 $65^{\circ}C$에서 20시간 동안 배양하였을 때 최대의 단백질 분해 효소를 생산하였다. Bacillus sp. JE 375로부터 단백질 분해 효소를 acetone으로 침전시키고 DEAE-sepharose column chromatography를 통하여 효소를 정제하여 SDS-PAGE를 통해 확인한 결과 55 kDa 크기의 band를 확인할 수 있었다. 이 효소의 최적 배양 온도는 $65^{\circ}C$이었으며 배지의 최적 pH는 6.5로 나타났다. pH에 대한 안정성은 중성 부근의 pH에서 효소 활성의 안정성이 높게 나타났다. 본 효소의 반응 조건을 검토한 결과 중성 조건에서 안정하였으며, $60^{\circ}C$의 고온에서 활성을 가졌다. 효소 활성은 1 mM $CaCl_2$ 첨가에 의해 증가하였다.