• Title/Summary/Keyword: cell growth, motility

Search Result 75, Processing Time 0.022 seconds

Effects of Conjugated Linoleic Acid (CLA) on Matrix Metalloproteinase (MMP) Activity and Cell Motility in Human Colon Cancer Cell Lines (Conjugated Linoleic Acid (CLA)가 인체 대장암 세포주에서 Matrix Metalloproteinase (MMP) 활성과 세포이동성에 미치는 영향)

  • 설소미;방명희;최옥숙;윤정한;김우경
    • Journal of Nutrition and Health
    • /
    • v.36 no.3
    • /
    • pp.280-286
    • /
    • 2003
  • Conjugated linoleic acid (CLA) consists of several geometric isomers of linoleic acid. CLA is found in foods derived from ruminants and exhibits strong anticarcinogenic effects in a variety of animal models. Matrix metalloproteinases (MMPs) play a key role in cancer progression. Specifically, MMP-2 and -9, which hydrolyze the basal membrane type IV collagen, are involved in the initial breakdown of collagen and basement membrane components during tumor growth and invasion. However, the effects of CLA on cancer cell motility and MMP expression and activity are not currently well known. Therefore, the present study examined whether CLA reduces the activity of MMP and cell motility in SW480 and SW620 cells, the human colon cancer cell lines. Gelatin zymography and Western blot analysis revealed that phorbol 12-myristate 13-acetate (PMA) induced the activity and protein expression of Mr 92,000 MMP-9 in both cell lines. To examine whether CLA inhibits the MMP activity, cells were incubated with 100 ngfmL PMA in the presence of various concentrations of CLA. PMA-induced MMP-9 activity was decreased by 20 $\mu$ M CLA in SW480 cells, and by 10 $\mu$ M and 20 $\mu$ M CLA in SW620 cells. Results from the Hoyden chamber assay showed that cell motility was increased by PMA and that PMA-induced cell motility was significantly decreased by 20 $\mu$ M CLA in SW480 cells. These results indicate that CLA may reduce the motility and MMP activity in human colon cancer cells.

INVOLVEMENT OF PHOSPHATIDYLINOSITOL 3-KINASE (PI3K) PATHWAY IN H-RAS-INDUCED INVASION AND MOTILITY OF HUMAN BREAST EPITHELIAL CELLS

  • Shin, Il-Chung;Aree Moon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.142-142
    • /
    • 2002
  • Many studies have identified the phosphatidylinositol 3-kinase (PI3K) as a key regulator for various cellular functions including cell survival, growth and motility. We have previously shown that H-ras, but not N-ras, induces invasiveness and motility in human breast epithelial cells (MCF10A), while both H-ras and N-ras induce transformed phenotype.(omitted)

  • PDF

Roles of Phosphatidylinositol 3-Kinase(PI3K) and Rac1

  • Shin, Il-Chung;Kim, Seon-Hoe;Moon, A-Ree
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.223.1-223.1
    • /
    • 2003
  • Many studies have identified the phosphatidylinositol 3-kinase (PI3K) as a key regulator for various cellular functions including cell survival, growth and motility. We have previously shown that H-ras, but not N-ras. induces invasiveness and motility in human breast epithelial cells (MCF10A), while both H-ras and N-ras induce transformed phenotype. In the present study, we wished to investigate the functional role of PI3K pathway in H-ra-induced invasive phenotype and motility of MCF10A cells. (omitted)

  • PDF

C-FLIP Promotes the Motility of Cancer Cells by Activating FAK and ERK, and Increasing MMP-9 Expression

  • Park, Deokbum;Shim, Eunsook;Kim, Youngmi;Kim, Young Myeong;Lee, Hansoo;Choe, Jongseon;Kang, Dongmin;Lee, Yun-Sil;Jeoung, Dooil
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.184-195
    • /
    • 2008
  • We examined the role of c-FLIP in the motility of HeLa cells. A small interfering RNA (siRNA) directed against c-FLIP inhibited the adhesion and motility of the cells without affecting their growth rate. The long form of c-FLIP ($c-FLIP_L$), but not the short form ($c-FLIP_S$), enhanced adhesion and motility. Downregulation of $c-FLIP_L$ with siRNA decreased phosphorylation of FAK and ERK, while overexpression of $c-FLIP_L$ increased their phosphorylation. Overexpression of FAK activated ERK, and enhanced the motility of HeLa cells. FRNK, an inhibitory fragment of FAK, inhibited ERK and decreased motility. Inhibition of ERK also significantly suppressed $c-FLIP_L$-promoted motility. Inhibition of ROCK by Y27632 suppressed the $c-FLIP_L$-promoted motility by reducing phosphorylation of FAK and ERK. Overexpression of $c-FLIP_L$ increased the expression and secretion of MMP-9, and inhibition of MMP-9 by Ilomastat reduced $c-FLIP_L$- promoted cell motility. A caspase-like domain (amino acids 222-376) was found to be necessary for the $c-FLIP_L$-promoted cell motility. We conclude that $c-FLIP_L$ promotes the motility of HeLa cells by activating FAK and ERK, and increasing MMP-9 expression.

Effects of miR-152 on Cell Growth Inhibition, Motility Suppression and Apoptosis Induction in Hepatocellular Carcinoma Cells

  • Dang, Yi-Wu;Zeng, Jing;He, Rong-Quan;Rong, Min-Hua;Luo, Dian-Zhong;Chen, Gang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4969-4976
    • /
    • 2014
  • Background: miR-152 is involved in the genesis and development of several malignancies. However, its role in HCC has not been fully clarified. The aim of this study was to investigate the clinicopathological significance of miR-152 and its effect on the malignant phenotype of HCC cells. Methods: miR-152 expression was detected using real-time quantitative RT-PCR in 89 pairs of HCC formalin-fixed paraffin-embedded and their adjacent tissues. Functionally, in vitro effects and mechanisms of action of miR-152 on proliferation, viability, caspase activity, apoptosis and motility were explored in HepG2, HepB3 and SNU449 cells, as assessed by spectrophotometry, fluorimetry, fluorescence microscopy, wound-healing and Western blotting, respectively. Results: miR-152 expression in HCC was downregulated remarkably compared to that in adjacent hepatic tissues. miR-152 levels in groups of advanced clinical stage, larger tumor size and positive HBV infection, were significantly lower than in other groups. A miR-152 mimic could suppress cell growth, inhibit cell motility and increase caspase activity and apoptosis in HCC cell lines. Furthermore, Western blotting showed that the miR-152 mimic downregulated Wnt-1, DNMT1, ERK1/2, AKT and TNFRS6B signaling. Intriguingly, inverse correlation of TNFRF6B and miR-152 expression was found in HCC and bioinformatics confirmed that TNFRF6B might be a target of miR-152. Conclusions: Underexpression of miR-152 plays a vital role in hepatocarcinogenesis and lack of miR-152 is related to the progression of HCC through deregulation of cell proliferation, motility and apoptosis. miR-152 may act as a tumor suppressor miRNA by also targeting TNFRSF6B and is therefore a potential candidate biomarker for HCC diagnosis, prognosis and molecular therapy.

Effect of Cyanidin on Cell Motility and Invasion in MDA-MB-231 Human Breast Cancer Cells (Anthocyanin계 성분인 Cyanidin이 인체 유방암세포 MDA-MB-231의 이동성과 침윤성에 미치는 영향)

  • Chu, Su-Kyoung;Seo, Eun -Young;Kim, Woo-Kyoung;Kang, Nam-E
    • Journal of Nutrition and Health
    • /
    • v.41 no.8
    • /
    • pp.711-717
    • /
    • 2008
  • Anthocyanidins, the aglycones of anthocyanins, are natural colorants belonging to the flavonoid family. Cyanidin is one of the anthocyanidins, used for their antioxidant properties. Furthermore, previous studies have shown anthocyanidin-rich material extracts or aglycone form inhibit growth and induce apoptosis of cancer cells. But, Tumor metastasis is the most important cause of cancer death, and various treatment strategies have targeted on preventing the occurrence of metastasis. This study investigated the effects of cyanidin on metastasis processes, including motility, invasion and activity of MMP-2 and MMP-9 in MDA-MB-231 human breast cancer cell lines. We cultured MDA-MB-231 cells in presence of various concentrations 0, 5, 10 and 20 ${\mu}M$ of cyanidin. The cell motility was significantly decreased dosedependently in cells treated with cyanidin (p < 0.05) and cyanidin treatment caused the significant suppression of the invasion (p < 0.05). MMP-2 and MMP-9 activities, and MMP-9 mRNA express were not affected by anthocyanin treatment. In conclusion, cyanidin inhibits cell motility, invasion in MDA-MB-231 human breast cancer cell lines.

Loss of βPix Causes Defects in Early Embryonic Development, and Cell Spreading and Platelet-Derived Growth Factor-Induced Chemotaxis in Mouse Embryonic Fibroblasts

  • Kang, TaeIn;Lee, Seung Joon;Kwon, Younghee;Park, Dongeun
    • Molecules and Cells
    • /
    • v.42 no.8
    • /
    • pp.589-596
    • /
    • 2019
  • ${\beta}Pix$ is a guanine nucleotide exchange factor for the Rho family small GTPases, Rac1 and Cdc42. It is known to regulate focal adhesion dynamics and cell migration. However, the in vivo role of ${\beta}Pix$ is currently not well understood. Here, we report the production and characterization of ${\beta}Pix$-KO mice. Loss of ${\beta}Pix$ results in embryonic lethality accompanied by abnormal developmental features, such as incomplete neural tube closure, impaired axial rotation, and failure of allantois-chorion fusion. We also generated ${\beta}Pix$-KO mouse embryonic fibroblasts (MEFs) to examine ${\beta}Pix$ function in mouse fibroblasts. ${\beta}Pix$-KO MEFs exhibit decreased Rac1 activity, and defects in cell spreading and platelet-derived growth factor (PDGF)-induced ruffle formation and chemotaxis. The average size of focal adhesions is increased in ${\beta}Pix$-KO MEFs. Interestingly, ${\beta}Pix$-KO MEFs showed increased motility in random migration and rapid wound healing with elevated levels of MLC2 phosphorylation. Taken together, our data demonstrate that ${\beta}Pix$ plays essential roles in early embryonic development, cell spreading, and cell migration in fibroblasts.

Cell Proliferation and Motility Are Inhibited by G1 Phase Arrest in 15-kDa Selenoprotein-Deficient Chang Liver Cells

  • Bang, Jeyoung;Huh, Jang Hoe;Na, Ji-Woon;Lu, Qiao;Carlson, Bradley A.;Tobe, Ryuta;Tsuji, Petra A.;Gladyshev, Vadim N.;Hatfield, Dolph L.;Lee, Byeong Jae
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.457-465
    • /
    • 2015
  • The 15-kDa selenoprotein (Sep15) is a selenoprotein residing in the lumen of the endoplasmic reticulum (ER) and implicated in quality control of protein folding. Herein, we established an inducible RNAi cell line that targets Sep15 mRNA in Chang liver cells. RNAi-induced Sep15 deficiency led to inhibition of cell proliferation, whereas cell growth was resumed after removal of the knockdown inducer. Sep15-deficient cells were arrested at the G1 phase by upregulating p21 and p27, and these cells were also characterized by ER stress. In addition, Sep15 deficiency led to the relocation of focal adhesions to the periphery of the cell basement and to the decrease of the migratory and invasive ability. All these changes were reversible depending on Sep15 status. Rescuing the knockdown state by expressing a silent mutant Sep15 mRNA that is resistant to siRNA also reversed the phenotypic changes. Our results suggest that SEP15 plays important roles in the regulation of the G1 phase during the cell cycle as well as in cell motility in Chang liver cells, and that this selenoprotein offers a novel functional link between the cell cycle and cell motility.

Studies on the Fermentative Utilization of Cellulosic Wastes (Part 8) Mixed Culture of Cellulose Assimilating Bacteria (폐섬유자원의 발효공학적 이용에 관한 연구 (제8보) 섬유소자화세균의 혼합배양)

  • 윤한대;성낙계
    • Microbiology and Biotechnology Letters
    • /
    • v.6 no.2
    • /
    • pp.51-57
    • /
    • 1978
  • The study was made of the cultural condition and physiological characteristics of the symbiotic pair of microorganisms, Cellulomonas flavigena and the second organism. It also contains the results of a taxonomical study of the second organism. The results obtained wers summarized as follows : 1) Cell yield of the mixed culture, Cellulomonas and the second organism, was higher than that of each pure culture in CM-Cellulose medium. 2) The taxonomical characteristics of the second organism revealed that it probably belonged to the genus Sporocytophaga because it had a gliding motility and microcyst. 3) Optimum pH of the mixed culture was found to be in the vicinity of 7.2, and optimum temperature of the cell growth in the mixed culture was observed to be in the vicinity of 30$^{\circ}C$. 4) It was found that the majority of the population during growth in the mixed culture consisted of Cellulomonas flavigena. 5) Cellulomonas flavigena required thiamine and biotin as growth factors but Sporocytophaga sp. had no requirement of vitamins. 6) Gulucose was not found in detectable amounts in the medium of Cellulomonas flavigena but it was traced in the mixture by thin layer chromatography. 7) Sixteen amino acids were analyzed from the cell protein of Cellulomonas flavigena by amino acid autoanalyzer. The amount of the leucine, valine and arginine was very high.

  • PDF

The Synergistic Anticancer Effect of Artesunate Combined with Allicin in Osteosarcoma Cell Line in Vitro and in Vivo

  • Jiang, Wei;Huang, Yong;Wang, Jing-Peng;Yu, Xiao-Yun;Zhang, Lin-Yi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4615-4619
    • /
    • 2013
  • Background: Artesunate, extracted from Artemisia annua, has been proven to have anti-cancer potential. Allicin, diallyl thiosulfinate, the main biologically active compound derived from garlic, is also of interest in cancer treatment research. This object of this report was to document synergistic effects of artesunate combined with allicin on osteosarcoma cell lines in vitro and in vivo. Methods: After treatment with artesunate and allicin at various concentrations, the viability of osteosarcoma cells was analyzed by MTT method, with assessment of invasion and motility, colony formation and apoptosis. Western Blotting was performed to determine the expression of caspase-3/9, and activity was also detected after drug treatment. Moreover, in a nude mouse model established with orthotopic xenograft tumors, tumor weight and volume were monitored after drug administration via the intraperitoneal (i.p.) route. Results: The viability of osteosarcoma cells in the combination group was significantly decreased in a concentration and time dependent manner; moreover, invasion, motility and colony formation ability were significantly suppressed and the apoptotic rate was significantly increased through caspase-3/9 expression and activity enhancement in the combination group. Furthermore, suppression of tumor growth was evident in vivo. Conclusion: Our results indicated that artesunate and allicin in combination exert synergistic effects on osteosarcoma cell proliferation and apoptosis.