• Title/Summary/Keyword: cell fusion

Search Result 868, Processing Time 0.03 seconds

Effects of Overexpression of C5 Protein on rnpB Gene Expression in Escherichia coli

  • Kim, Yool;Lee, Young-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.791-793
    • /
    • 2009
  • Escherichia coli RNase P is composed of a large RNA subunit (M1 RNA) and a small protein subunit (C5 protein). Since both subunits are assembled in a 1:1 ratio, expression of M1 RNA and C5 protein should be coordinately regulated for RNase P to be efficiently synthesized in the cell. However, it is not known yet how the coordination occurs. In this study, we investigated how overexpression of C5 protein affects expression of the rnpB gene encoding M1 RNA, using a lysogenic strain, which carries an rnpB-lacZ transcription fusion. Primer extension analysis of rnpB-lacZ fusion transcripts showed that the overexpression of C5 protein increased the amount of the fusion transcripts, suggesting that rnpB expression increases with the increase of intracellular level of C5 protein.

A New Gene of Protein Related to Myoblast Fusion detected by Monoclonal antibidy (근원세포 융합과 관련된 새로운 유전자의 확인)

  • 박수정;이영주
    • The Korean Journal of Zoology
    • /
    • v.38 no.1
    • /
    • pp.49-54
    • /
    • 1995
  • 본 연구자들은 근원세포를 면역시켜 얻은 hybidoma들을 검색하여. 계배 근원세포의 분화와 관련된 단백질을 인지하여 분화를 억제하는 대과가 있는 monoclonal antibody 3H35를 선별하여 그 항원을 확인한 바 있다(Kim et af.. (1992), Korean J. Zool 35 29-36) 본 연구에서는 λZAP에 cloning된 chicken muscle CDNA library들을 lacZ fusion protein으로 발현시켜 항체 3H35로 검색하여 그 유전자를 찾아내었다. 선별한 CDNA clone 중 C59의 삽입 절편은 1.6 kb이었고, 발현시킨 facE fusion protein 은 60 kDa로, f-galactosidase에 대한 항체에 반응하며 3H35와도 반응함을 immunoaffinitv adsorbant와 immunoblot으로 확인하였다 Clone C59의 삽입 절편의 염기서열을 분석한 결과, 실제 유전자는 1.6 kb 이상이며, 알려진 어느 다른 유전자와도 관련이 없는 새로운 근특이 유전자로 판단되었다. 아미노산으로 전환시켰을 때 31개의 특이한 서열이 7차례 반복된 부분이 나타났으며 이 서열의 23개가 일정하게 보존되어있고 나머지 서열의 아미노산의 polarity도 매우 유사하게 효존되어있다. 이들의 보존성이 극히 높은 것으로 보아 독특한 기능을 수행하는 domain으로 추정된다.

  • PDF

Antiapoptotic Fusion Protein Delivery Systems

  • Tan, Cheau Yih;Kim, Yong-Hee
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.481-488
    • /
    • 2008
  • Apoptosis is a natural cell suicide mechanism to maintain homeostasis. However, many of the diseases encountered today are caused by aberrant apoptosis where excessive apoptosis leads to neurodegenerative disorders, ischemic heart disease, autoimmune disorders, infectious diseases, etc. A variety of antiapoptotic agents have been reported to interfere with the apoptosis pathway. These agents can be potential drug candidates for the treatment or prevention of diseases caused by dysregulated apoptosis. Obviously, world-wide pharmaceutical and biotechnology companies are gearing up to develop antiapoptotic drugs with some products being commercially available. Polymeric drug delivery systems are essential to their success. Recent R&D efforts have focused on the chemical or bioconjugation of antiapoptotic proteins with the protein transduction domain (PTD) for higher cellular uptake with antibodies for specific targeting as well as with polymers to enhance the protein stability and prolonged effect with success observed both in vivo and in vitro. All these different fusion antiapoptotic proteins provide promising results for the treatment of dysregulated apoptosis diseases.

Defective Mitochondrial Function and Motility Due to Mitofusin 1 Overexpression in Insulin Secreting Cells

  • Park, Kyu-Sang;Wiederkehr, Andreas;Wollheim, Claes B.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.1
    • /
    • pp.71-77
    • /
    • 2012
  • Mitochondrial dynamics and distribution is critical for their role in bioenergetics and cell survival. We investigated the consequence of altered fission/fusion on mitochondrial function and motility in INS-1E rat clonal ${\beta}$-cells. Adenoviruses were used to induce doxycycline-dependent expression of wild type (WT-Mfn1) or a dominant negative mitofusin 1 mutant (DN-Mfn1). Mitochondrial morphology and motility were analyzed by monitoring mitochondrially-targeted red fluorescent protein. Adenovirus-driven overexpression of WT-Mfn1 elicited severe aggregation of mitochondria, preventing them from reaching peripheral near plasma membrane areas of the cell. Overexpression of DN-Mfn1 resulted in fragmented mitochondria with widespread cytosolic distribution. WT-Mfn1 overexpression impaired mitochondrial function as glucose- and oligomycin-induced mitochondrial hyperpolarization were markedly reduced. Viability of the INS-1E cells, however, was not affected. Mitochondrial motility was significantly reduced in WT-Mfn1 overexpressing cells. Conversely, fragmented mitochondria in DN-Mfn1 overexpressing cells showed more vigorous movement than mitochondria in control cells. Movement of these mitochondria was also less microtubule-dependent. These results suggest that Mfn1-induced hyperfusion leads to mitochondrial dysfunction and hypomotility, which may explain impaired metabolism-secretion coupling in insulin-releasing cells overexpressing Mfn1.

Nucleo-cytoplasmic Interactions of Bovine Oocytes and Embryos Following Nuclear Transplantation (핵이식에 의한 소 난자 및 초기배의 핵-세포질의 상호작용에 관한 연구)

  • 김정익;양부근;정희태
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.4
    • /
    • pp.287-294
    • /
    • 1994
  • This study was to investigate the effects of electrofusion, activation and developmental stage of donor embryos on in vitro development of nuclear transplant bovine embryos. A single blastomere nucleus from 8-cell to morula stage embryos produced by in vitro fertilization(IVF) was transferred into a recipient oocyte enucleated at 23∼25 h after in vitro maturation(IVM) or into a recipient oocyte enucleated and cultured for 14∼15 h. In one experiment the nuclear transplant embryos were subjected to additional activation treatments. Fusion rate of nuclear transplant eggs was high at direct current(D.C) voltages of 1.0 and 1.5 kV/cm 991.5 and 93.3%, respectively), but decreased at 2.0kV/cm (81.8%). Additional activation treatments by electric pulases or 7% ethanol did not affect the cleavage and development of nuclear transplant embryos. Development of nuclear transplant embryos slightly increased by delayed nuclear transfer and fusion (42∼43 h after IVM). With this system, blastocysts were obtained from transfer of 8-cell to morula stage donor nuclei (9.6%∼2.4%). The result of this study suggests that nucleo-cytoplasmic interactins, expecially activation of ooplast are very important for the development of nuclear transplant embryos, and donor cell stage does not affect the development of nuclear transplant embryos.

  • PDF

Simple Analysis for Interaction between Nanoparticles and Fluorescence Vesicle as a Biomimetic Cell for Toxicological Studies

  • Umh, Ha Nee;Kim, Younghun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.3998-4002
    • /
    • 2012
  • With continuing progress of nanotechnologies and various applications of nanoparticles, one needs to develop a quick and fairly standard assessment tool to evaluate cytotoxicity of nanoparticles. However, much cytotoxicity studies on the interpretation of the interaction between nanoparticles and cells are non-mechanistic and time-consuming. Here, we propose a simple screening method for the analysis of the interaction between several AgNPs (5.3 to 64 nm) and fluorescence-dye containing vesicles ($12{\mu}m$) acting as a biomimetic cell-membrane. Fluorescence-dye containing vesicle was prepared using a fluorescence probe (1,6-diphenyl-1,3,5-hexatryene), which was intercalated into the lipid bilayer due to their hydrophobicity. Zeta potential of all materials except for bare-AgNPs (+32.8 mV) was negative (-26 to -54 mV). The morphological change (i.e., rupture and fusion of vesicle, and release of dye) after mixing of the vesicle and AgNPs was observed by fluorescence microscopy, and fluorescence image were different with coating materials and surface charge of x-AgNPs. In the results, we found that the surface charge of nanoparticles is the key factor for vesicle rupture and fusion. This proposed method might be useful for analyzing the cytotoxicity of nanoparticles with cell-membranes instead of in vitro or in vivo cytotoxicity tests.

Effect of Ratio of Demineralized Bone Powder with Alginate Microcapsules on Articular Cartilage Regeneration (탈미네랄 골분이 비율별로 포접된 알지네이트 미세캡슐을 이용한 조직공학적 연골재생)

  • Kim, A Ram;Kim, Hye Min;Lee, Jung Keun;Lee, Ji Hye;Song, Jeong Eun;Yoon, Kun Ho;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.768-775
    • /
    • 2012
  • Alginate, obtained from the seaweeds, is a widely used biomaterial for cell transplantation, since its positive effect on viability of capsulized cells and its easier encapsulation capability of living cells. Demineralized bone powder (DBP), derived from the natural bone tissue, is widely applied for clinical trials for its low rate of reaction and antigenicity. A chondrocyte was seeded into an alginate with DBP of different contents, and a microcapsule was produced. The adhesion and proliferation of cells was observed through the MTT analysis, and the PCR was applied to estimate the content of the glycosaminoglycan (sGAG) and collagen, and confirm the specific genetic pattern of the chondrocytes. Also, the alginate microcapsule where the chondrocyte is seeded was extracted after transplantation under the skin of a nude mouse, and was immunochemically stained. The experimental result confirmed that the alginate microcapsule containing 1% of DBP not only showed the highest proliferation of cell but had a positive effect of chondrocytes by the interaction between the alginates and the growth factor in DBP. It can be expected that the microcapsule with application of the alginates and DBP might be an appropriate scaffold for tissue engineering.

Augmenter of Liver Regeneration Alleviates Renal Hypoxia-Reoxygenation Injury by Regulating Mitochondrial Dynamics in Renal Tubular Epithelial Cells

  • Long, Rui-ting;Peng, Jun-bo;Huang, Li-li;Jiang, Gui-ping;Liao, Yue-juan;Sun, Hang;Hu, Yu-dong;Liao, Xiao-hui
    • Molecules and Cells
    • /
    • v.42 no.12
    • /
    • pp.893-905
    • /
    • 2019
  • Mitochondria are highly dynamic organelles that constantly undergo fission and fusion processes that closely related to their function. Disruption of mitochondrial dynamics has been demonstrated in acute kidney injury (AKI), which could eventually result in cell injury and death. Previously, we reported that augmenter of liver regeneration (ALR) alleviates renal tubular epithelial cell injury. Here, we gained further insights into whether the renoprotective roles of ALR are associated with mitochondrial dynamics. Changes in mitochondrial dynamics were examined in experimental models of renal ischemia-reperfusion (IR). In a model of hypoxia-reoxygenation (HR) injury in vitro, dynamin-related protein 1 (Drp1) and mitochondrial fission process protein 1 (MTFP1), two key proteins of mitochondrial fission, were downregulated in the Lv-ALR + HR group. ALR overexpression additionally had an impact on phosphorylation of Drp1 Ser637 during AKI. The inner membrane fusion protein, Optic Atrophy 1 (OPA1), was significantly increased whereas levels of outer membrane fusion proteins Mitofusin-1 and -2 (Mfn1, Mfn2) were not affected in the Lv-ALR + HR group, compared with the control group. Furthermore, the mTOR/4E-BP1 signaling pathway was highly activated in the Lv-ALR + HR group. ALR overexpression led to suppression of HR-induced apoptosis. Our collective findings indicate that ALR gene transfection alleviates mitochondrial injury, possibly through inhibiting fission and promoting fusion of the mitochondrial inner membrane, both of which contribute to reduction of HK-2 cell apoptosis. Additionally, fission processes are potentially mediated by promoting tubular cell survival through activating the mTOR/4E-BP1 signaling pathway.

Effects of Demineralized Bone Particle Loaded Poly(lactic-co-glycolic acid) Scaffolds on the Attachment and Proliferation of Costal Cartilage Cells (탈미네랄화된 골분/PLGA 지지체에서 늑연골 세포의 부착과 성장에 미치는 영향)

  • Cho, Sun Ah;Song, Jeong Eun;Kim, Kyoung Hee;Ko, Hyun Ah;Lee, Dongwon;Kwon, Soon Yong;Chung, Jin Wha;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.632-637
    • /
    • 2013
  • It has been widely accepted that costal cartilage cells (CCs) have more excellent initial proliferation capacity than articular cartilage cells as well as the easiness for isolation and collection. This study demonstrated that CCs might be one of the substitutes for articular cartilage cells by tissue engineered cartilage. Poly(lactic-co-glycolic acid) (PLGA) has been extensively tested and used as scaffold material but it was limited by the low attachment of cells and the induction of inflammatory cells. Base on previous our studies, we confirmed demineralized bone particle (DBP) had the power of the reduction of inflammatory reaction and the stimulation proliferation of cells. We fabricated PLGA scaffold loaded with 10, 20, 40 and 80 wt% DBP and then tested the possibility of the regeneration of cartilage using CCs. Assays of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and scanning electron microscope (SEM) carried out to evaluate the attachment and proliferation of CCs in DBP/PLGA scaffolds. Glycosaminoglycan (sGAG) and collagen contents assay were conducted to confirm the effects of DBP on formation of extracellular matrix. This study demonstrated that DBP/PLGA scaffolds showed significant positive effects on cell growth and proliferation due to the vitality of DBP as well as the possibility of the application of CCs for tissue engineered cartilage.

Visualization of Hepatitis B Virus (HBV) Surface Protein Binding to HepG2 Cells

  • Lee, Dong-Gun;Park, Jung-Hyun;Choi, Eun-A;Han, Mi-Young;Kim, Kil-Lyong;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.29 no.2
    • /
    • pp.175-179
    • /
    • 1996
  • Viral surface proteins are known to play an essential role in attachment of the virus particle to the host cell membrane. In case of the hepatitis B virus (HBV) several reports have described potential receptors on the target cell side, but no definite receptor protein has been isolated yet. As for the viral side, it has been suggested that the preS region of the envelope protein, especially the preS1 region, is involved in binding of HBV to the host cell. In this study, preS1 region was recombinantly expressed in the form of a maltose binding protein (MBP) fusion protein and used to identify and visualize the expression of putative HBV receptor(s) on the host cell. Using laser scanned confocal microscopy and by FACS analysis, MBP-preS1 proteins were shown to bind to the human hepatoma cell line HepG2 in a receptor-ligand specific manner. The binding kinetic of MBP-preS1 to its cellular receptor was shown to be temperature and time dependent. In cells permeabilized with Triton X-100 and treated with the fusion protein, a specific staining of the nuclear membrane could be observed. To determine the precise location of the receptor binding site within the preS1 region, several short overlapping peptides from this region were synthesized and used in a competition assay. In this way the receptor binding epitope in preS1 was revealed to be amino acid residues 27 to 51, which is in agreement with previous reports. These results confirm the significance of the preS1 region in virus attachment in general, and suggest an internalization pathway mediated by direct attachment of the viral particle to the target cell membrane.

  • PDF