• Title/Summary/Keyword: cell fractions

Search Result 970, Processing Time 0.035 seconds

Anti-inflammatory and Immunosuppressive Effects of Panax notoginseng

  • Cao, Thao Quyen;Han, Jae Hyuk;Lee, Hyun-Su;Ha, Manh Tuan;Woo, Mi Hee;Min, Byung Sun
    • Natural Product Sciences
    • /
    • v.25 no.4
    • /
    • pp.317-325
    • /
    • 2019
  • Here, we designed to examine the anti-inflammatory effects on RAW264.7 cells and the immunosuppressive effects by evaluating interleukin-2 (IL-2) production in Jurkat T cells using a MeOH extract of Panax notoginseng roots. The results showed that the MeOH extract inhibited the synthesis of nitric oxide (NO) in a dose-dependent manner (IC50 value of 7.08 ㎍/mL) and displayed effects on T cell activation at a concentration of 400 ㎍/mL. In efforts to identify the potent compounds, bioactivity-guided fractionation of the MeOH extract and chemical investigation of its active CH2Cl2-, EtOAc-, and butanol-soluble fractions led to the successful isolation and identification of eleven compounds, including two polyacetylenes (1, 2), a steroid saponin (3), seven dammarane-type ginsenosides (4 - 10), and an oleanane-type ginsenoside (11). Among them, compound 11 was isolated from this plant for the first time. Compound 2 exhibited potent inhibitory effects on NO synthesis and an immunosuppressive effect with IC50 values of 2.28 and 65.57 μM, respectively.

Isolation of GTP Binding Protein from Bovine Brain (소의 뇌로부터 GTP 결합단백질의 분리)

  • Kim, Jung-Hye
    • Journal of Yeungnam Medical Science
    • /
    • v.10 no.2
    • /
    • pp.360-368
    • /
    • 1993
  • GTP binding protein (G-protein) associated with membrane and involved in signal transduction was isolated from bovine brain, and molecular weight of G protein was observed. As the results, cell membranes were homogenized from bovine brain tissues and proteins of membrane were gained using 1% cholate, and progressed the chromatography. The purification process was performed by step, DEAE-Sephacel, Ulttrogel AcA 34 and heptylamine-Sepharose column chromatography. The chromatographic fractions were confirmed by GTP binding assay and SDS-polyacrylamide gel electrophoresis. Molecular weight of $Go{\alpha}$ was revealed 39,000 dalton and $G{\beta}$ 36,000 dalton. One more step of heptylamine-Sepharose was enforced to purify the GTP binding protein. Finally I gained the GTP binding protein isolated subtype of $Go{\alpha}$ and $G{\beta}$.

  • PDF

Inhibitory Effect of Salvia officinalis on the Inflammatory Cytokines and Inducible Nitric Oxide Synthasis in Murine Macrophage RAW264.7 (RAW 264.7 Cell에서 세이지에 의한 염증성 Cytokine 및 iNOS억제 효과)

  • 현은아;이혜자;윤원종;박수영;강희경;김세재;유은숙
    • YAKHAK HOEJI
    • /
    • v.48 no.2
    • /
    • pp.159-164
    • /
    • 2004
  • Primary pro-inflammatory cytokines are a trio: tumor necrosis- $\alpha$ (TNF-$\alpha$), interleukine-$\beta$ (IL-$\beta$), and interleukine-6 (IL-6). These cytokines initiate and regulate the acute-phase inflammatory response during infection, trauma, or stress and appear to play an important role in the immune process. Nitric oxide (NO) is a multi-functional mediator, which plays an important role in regulating various biological functions in vivo. NO production by inducible nitric oxide synthase (iNOS) in macrophages is essential for the defense mechanisms against microorganisms and tumor cells. However, over-expression of iNOS by various stimuli, resulting in over-production of NO, contributes to the pathogenesis of septic shock and some inflammatory and auto-immune disease. Solvent fractions of sage ( Salvia officinalis L.), which is cultivated in Jeju-Do, was assayed for their effects on TNF-$\alpha$ and IL-6 production in LPS-stimulated RAW 264.7 macrophages. Hexane and ethylacetate (EtOAc) fraction of sage inhibited the protein and mRNA expression of TNF-$\alpha$ and IL-6 in LPS stimulated RAW 264.7 cells at the concentration of 100 $\mu\textrm{g}$/$m\ell$. Also, incubation of RAW 264.7 cells with the fraction of hexane or EtOAc (50 $\mu\textrm{g}$/$m\ell$) inhibited the LPS induced nitrite accumulation and the LPS/IFN-${\gamma}$ induced iNOS protein. And this inhibition of iNOS protein is concordant with the inhibition of iNOS mRNA expression. Above results suggest that extract of sage may have anti-inflammatory activity through the inhibition of pro-inflammatory cytokines (TNF-$\alpha$, IL-1$\beta$, IL-6), iNOS and NO.

ISOLATION AND IDENTIFICATION OF ANAEROBIC RUMEN BACTERIUM, ACTINOMYCES SP. 40 AND ENZYMATIC PROPERTIES OF β-1, 4-ENDOGLUCANASE

  • Min, H.K.;Choi, Y.J.;Ha, J.K.;Cho, K.K.;Kwon, Y.M.;Chang, Y.H.;Lee, S.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.3
    • /
    • pp.373-382
    • /
    • 1994
  • A bacterial strain No. 40, which produced extracellular endoglucanase, was isolated from the rumen of Korean native goals and identified to be a genus of Actinomyces sp. The optimum conditions for endoglucanase production in PY-CMC medium were initial pH of 7.0 and 4 days of cultivation at $39^{\circ}C$. When localization of endoglucanase activity of Actinomyces sp. was determined, 68% of the enzyme activity was found in the extracellular fraction, 11% of the activity was detected in the periplasmic space and the remaining activity was in the intracellular and cell-bound fractions. The maximal endoglucanase activity was observed at pH 5.0 and it was most s table at pH 5.0. The optimum temperature of this enzyme activity was $55^{\circ}C$, but enzyme activity was gradually lost at temperature above $60^{\circ}C$. The crude enzyme was activated by addition of 10 mM cysteine and 10 mM DTT. But it was inhibited by addition of 10 mM $Cu^{{+}{+}}$ and $Fe^{{+}{+}}$. This crude enzyme could digest carboxymethylcellulose (CMC), and degrade xylan, avicel, pNPG, and pNPC to a less extent.

Activation of Macrophages by the Components Produced from Cordyceps militaris

  • Kim, Hyun-Yul;Kim, Kwang-Hee;Han, Shin-Ha;Lee, Seong-Jung;Kwon, Jeung-Hak;Lee, Sung-Won;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • v.7 no.2
    • /
    • pp.57-65
    • /
    • 2007
  • Background: Cordyceps militaris have been reported to modify the immune and inflammatory responses both in vivo and in vitro. Macrophages play important roles in the innate immunity through the phagocytosis of antigens. This study examined the effects of Cordyceps militaris on the activation of murine macrophage RAW 264.7 cells and primary macrophages. Methods: The components contained in culture broth of Cordyceps militaris were purified by propyl alcohol extraction and HP 20 column chromatography to CMDB, CMDBW, CMDB5P, and CMDB25P. The amounts of nitric oxide (NO) were determined by using ELISA, Griess reagent respectively. The amounts of some cytokines were determined by using ELISA, western blot, and RT-PCR The expression levels of cell surface molecules (ICAM-1, B7-1 and B7-2) were measured by flow cytometric analysis. Results: All the components of Cordyceps militaris produced significant amounts of NO. In particular, CMDB produced much more NO in RAW 264.7 cells and primary macrophages than other fractions of Cordyceps militaris. CMDB increased significantly the production of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-1${\beta}$, and IL-6 dose-dependently in RAW 264.7 cells. Examination of the gene expression level also showed that the enhanced production of cytokines was correlated with the up-regulation of i-NOS expression, cycloxygenase (COX)-2 expression, IL-1${\beta}$ and IL-6 expression, and TNF-${\alpha}$ expression on the expression of mRNAs by semi-quantitative RT-PCR Western blot analysis also confirmed that CMDB enhances the expression level of these cytokines. Conclusion: These results show that CMDB stimulates the production of NO and pro-inflammatory cytokines and can also up-regulate the gene expression levels in macrophages.

Antimicrobial Activity of Mulberry Leaf against Mutans Streptococci and Periodontopathogens

  • Park, Soon-Nang;Lim, Yun Kyong;Cho, Eugene;Jo, Eojin;Park, Pyoung-Sim;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.39 no.4
    • /
    • pp.201-206
    • /
    • 2014
  • This study investigated the antimicrobial activity of methanol extract of mulberry leaf against 16 strains of mutans streptococci and four species of periodontopathogens: Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans. The antimicrobial activities of the crude extracts or silica gel chromatography fractions of methanol-extracted mulberry leaf were evaluated by determining minimal inhibitory concentrations using an established microdilution method. The cytotoxicity of the extracts of mulberry leaf on KB cells was tested by the methyl thiazolyl tetrazolium assay. Chromatography fraction 12 displayed the most potent antimicrobial activity against all 16 strains of mutans streptococci, P. gingivalis, and P. intermedia. No KB cell cytotoxicity was evident up to $128{\mu}g/ml$ of fraction 12. The methanol extract had no antimicrobial activity against F. nucleatum and A. actinomycetemcomitans. These results suggest chromatography fraction 12 methanol extract of mulberry leaf could be useful in the development of oral hygiene products, such as dentifrice and oral hygiene solution, for the prevention of dental caries.

COMPUTATION OF LAMINAR NATURAL CONVECTION OF NANOFLUID USING BUONGIORNO'S NONHOMOGENEOUS MODEL (Buongiorno의 비균질 모델을 사용한 나노유체의 층류 자연대류 해석)

  • Choi, S.K.;Kim, S.O.;Lee, T.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.25-34
    • /
    • 2013
  • A numerical study of a laminar natural convection of the CuO-water nanofluid in a square cavity using the Buongiorno's nonhomogeneous model is presented. All the governing equations including the volume fraction equation are discretized on a cell-centered, non-uniform grid employing the finite-volume method with a primitive variable formulation. Calculations are performed over a range of Rayleigh numbers and volume fractions of the nanopartile. From the computed results, it is shown that both the homogeneous and nonhomogeneous models predict the deterioration of the natural convection heat transfer well with an increase of the volume fraction of nanoparticle at the same Rayleigh number, which was observed in the previous experimental studies. It is also shown that the differences in the computed results of the average Nusselt number at the wall between the homogeneous and nonhomogeneous models are very small, and this indicates that the slip mechanism of the Brown diffusion and thermophoresis effects are negligible in the laminar natural convection of the nanofluid. The degradation of the heat transfer with an increase of the volume fraction of the nanoparticle in the natural convection of nanofluid is due to the increase of the viscosity and the decrease of the thermal expansion coefficient and the specific heat. It is clarified in the present study that the previous controversies between the numerical and experimental studies are owing to the different definitions of the Nusselt number.

Diversity of Deep-sea Piezophiles and Their Molecular Adaptations to High-pressure Environment

  • Kato, Chiaki;Sato, Takako;Tamegai, Hideyuki;Nakasone, Kaoru
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2007.05a
    • /
    • pp.80-82
    • /
    • 2007
  • We have isolated numerous cold deep-sea adapted microorganisms (piezophilic, formerly referred to as "barophilic" bacteria) using deep-sea research submersibles. Many of the isolates are novel psychrophilic bacteria, and we have identified several new piezophilic species, i.e., Photobacterium profundum, Shewanella violacea, Moritella japonica, Moritella yayanosii, Psychromonas kaikoi, and Colwellia piezophila. These piezophiles are involving to five genera in gamma-Proteobacteria subgroup and produce significant amounts of unsaturated fatty acids in their cell membrane fractions to maintain the membrane fluidity in cold and high-pressure environments. Piezophilic microorganisms have been identified in many deep-sea bottoms of many of the world oceans. Therefore, these microbes are well distributed on our planet. One of the isolated deep-sea piezophiles, Shewanella violacea strain DSS12 is a psychrophilic, moderately piezophilic bacterium from a sediment sample collected at the Ryukyu Trench (depth: 5,110 m), which grows optimally at 30 MPa and $8^{\circ}C$ but also grows at atmospheric pressure (0.1 MPa) and $8^{\circ}C$. We have examined this strain to elucidate the molecular basis for gene regulation at different pressure conditions because this strain is useful as a model bacterium for comparing the various features of bacterial physiology under pressure conditions. In addition, we completed the sequencing of the entire genome of this piezophilic bacterium and we expect that many biotechnologically useful genes will be identified from the genome information.

  • PDF

Separation and Performance lest of Wnitening Agent in Rhodiola Sachalinensis (홍경천에 포함된 미백성분의 분리 및 성능검사)

  • 최두영;안소영;이승기;한정선;김은철;이향복;신정현;김은기;노경호
    • KSBB Journal
    • /
    • v.19 no.3
    • /
    • pp.169-173
    • /
    • 2004
  • The Rhodiola Sachalinensis 5 g were mixed and extracted with methanol 150 $m\ell$ at the room temperature for 12 h. The effluents were collected and grouped into the two. Un this experimental condition, the mobile phase composition were linearly changed as follows; water/methanol : 90/10 - 30/70 (vol. %, for 5 min), 30/70 - 10/90 (vol. %, for 15 min) and an analytical column (3.9 ${\times}$ 25 em, 15 $\mu\textrm{m}$ particle size, and 300 ${\AA}$ pore size) was utilized. The performance of the extracted Rhodiola Sachalinensis as a whitening agent was not favorable, so it classifies the Rhodiola Sachalinensis extractions with two fractions and collects each fraction for whitening agent assay. For the in-vivo melanin production ratio assay that used melanin-a cell in 10 ppm concentration, it was 58.6%, the first fraction of the effluents collected between 1.0 and 4.0 min, while it was 60% between 10.4 and 17.6 min for the second fraction, which were more efficient than that of arbutin, 45.6%.

Overexpression, Purification, and Characterization of $\beta$-Subunit of Group II Chaperonin from Hyperthermophilic Aeropyrum pernix K1

  • Shin, Eun-Jung;Lee, Jin-Woo;Kim, Jeong-Hwan;Jeon, Sung-Jong;Kim, Yeon-Hee;Nam, Soo-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.542-549
    • /
    • 2010
  • In the present study, overexpression, purification, and characterization of Aeropyrum pernix K1 chaperonin B in E. coli were investigated. The chaperonin $\beta$-subunit gene (ApCpnB, 1,665 bp ORF) from the hyperthermophilic archaeon A. pernix K1 was amplified by PCR and subcloned into vector pET21a. The constructed pET21a-ApCpnB (6.9 kb) was transformed into E. coli BL21 Codonplus (DE3). The transformant cell successfully expressed ApCpnB, and the expression of ApCpnB (61.2 kDa) was identified through analysis of the fractions by SDS-PAGE (14% gel). The recombinant ApCpnB was purified to higher than 94% by using heat-shock treatment at $90^{\circ}C$ for 20 min and fast protein liquid chromatography on a HiTrap Q column step. The purified ApCpnB showed ATPase activity and its activity was dependent on temperature. In the presence of ATP, ApCpnB effectively protected citrate synthase (CS) and alcohol dehydrogenase (ADH) from thermal aggregation and inactivation at $43^{\circ}$ and $50^{\circ}$, respectively. Specifically, the activity of malate dehydrogenase (MDH) at $85^{\circ}$ was greatly stabilized by the addition of ApCpnB and ATP. Coexpression of pro-carboxypeptidase B (pro-CPB) and ApCpnB in E. coli BL21 Codonplus (DE3) had a marked effect on the yield of pro-CPB as a soluble and active form, speculating that ApCpnB facilitates the correct folding of pro-CPB. These results suggest that ApCpnB has both foldase and holdase activities and can be used as a powerful molecular machinery for the production of recombinant proteins as soluble and active forms in E. coli.